Reductive group actions on affine varieties and their doubling
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 4, page 929-950
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanyushev, Dmitri I.. "Reductive group actions on affine varieties and their doubling." Annales de l'institut Fourier 45.4 (1995): 929-950. <http://eudml.org/doc/75151>.
@article{Panyushev1995,
abstract = {We study $G$-actions of the form $(G:X\times X^\{*\})$, where $X^\{*\}$ is the dual (to $X$) $G$-variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action $(G:X)$ is given. It is shown that the doubled actions have a number of nice properties, if $X$ is spherical or of complexity one.},
author = {Panyushev, Dmitri I.},
journal = {Annales de l'institut Fourier},
keywords = {algebra of invariants; doubled actions; complexity of the action; spherical variety},
language = {eng},
number = {4},
pages = {929-950},
publisher = {Association des Annales de l'Institut Fourier},
title = {Reductive group actions on affine varieties and their doubling},
url = {http://eudml.org/doc/75151},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Panyushev, Dmitri I.
TI - Reductive group actions on affine varieties and their doubling
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 929
EP - 950
AB - We study $G$-actions of the form $(G:X\times X^{*})$, where $X^{*}$ is the dual (to $X$) $G$-variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action $(G:X)$ is given. It is shown that the doubled actions have a number of nice properties, if $X$ is spherical or of complexity one.
LA - eng
KW - algebra of invariants; doubled actions; complexity of the action; spherical variety
UR - http://eudml.org/doc/75151
ER -
References
top- [B1] M. BRION, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple, Ann. Inst. Fourier, 33-1 (1983), 1-27. Zbl0475.14038MR85a:14031
- [B2] M. BRION, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J., 58 (1989), 397-424. Zbl0701.14052MR90i:14048
- [HH] R. HOWE, R. HUANG, Projective invariants of four subspaces, Preprint. Zbl0852.15021
- [KR] B. KOSTANT, S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
- [Li] P. LITTELMANN, On spherical double cones, J. Algebra, 166 (1994), 142-157. Zbl0823.20040MR95c:14066
- [Lu] D. LUNA, Adhérences d'orbite et invariants, Invent. Math., 29 (1975), 231-238. Zbl0315.14018MR51 #12879
- [LR] D. LUNA, R.W. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. Zbl0444.14010MR80k:14049
- [P1] D. PANYUSHEV, Orbits of maximal dimension of solvable subgroups of reductive algebraic groups and reduction for U-invariants, Math. USSR-Sb., 60 (1988), 365-375. Zbl0663.20044MR88h:14047
- [P2] D. PANYUSHEV, Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. Zbl0706.14032MR92e:14046
- [P3] D. PANYUSHEV, Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. Zbl0804.14024MR94g:14025
- [P4] D. PANYUSHEV, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. Zbl0822.14024MR95e:14039
- [P5] D. PANYUSHEV, A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. Zbl0820.14033MR96d:13005
- [P6] D. PANYUSHEV, Good properties of algebras of invariants and defect of linear representations, J. Lie Theory, 5 (1995). Zbl0845.14008MR96j:14034
- [Po1] V.L. POPOV, A stability criterion for an action of a semisimple group on a factorial variety, Math. USSR-Izv., 4 (1971), 527-535. Zbl0261.14011
- [Po2] V.L. POPOV, Contractions of the actions of reductive algebraic groups, Math. USSR-Sbornik, 58 (1987), 311-335. Zbl0627.14033
- [Ri] R.W. RICHARDSON, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc., 25 (1982), 1-28. Zbl0467.14008MR83i:14041
- [Sch1] G. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12. Zbl0391.20033MR80c:14008
- [Sch2] G. SCHWARZ, Lifting smooth homotopies of orbit spaces, Publ. Math. I.H.E.S., 51 (1980), 37-135. Zbl0449.57009MR81h:57024
- [VP1] E.B. VINBERG, V.L. POPOV, On a class of quasihomogeneous affine varieties, Math. USSR-Izv., 6 (1972), 743-758. Zbl0255.14016MR47 #1815
- [VP2] V.L. POPOV, E.B. VINBERG, Invariant theory, in : “Encyclopaedia Math. Sci.” 55, Berlin, Springer, 1994, 123-284. Zbl0789.14008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.