Reductive group actions on affine varieties and their doubling

Dmitri I. Panyushev

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 4, page 929-950
  • ISSN: 0373-0956

Abstract

top
We study G -actions of the form ( G : X × X * ) , where X * is the dual (to X ) G -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action ( G : X ) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.

How to cite

top

Panyushev, Dmitri I.. "Reductive group actions on affine varieties and their doubling." Annales de l'institut Fourier 45.4 (1995): 929-950. <http://eudml.org/doc/75151>.

@article{Panyushev1995,
abstract = {We study $G$-actions of the form $(G:X\times X^\{*\})$, where $X^\{*\}$ is the dual (to $X$) $G$-variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action $(G:X)$ is given. It is shown that the doubled actions have a number of nice properties, if $X$ is spherical or of complexity one.},
author = {Panyushev, Dmitri I.},
journal = {Annales de l'institut Fourier},
keywords = {algebra of invariants; doubled actions; complexity of the action; spherical variety},
language = {eng},
number = {4},
pages = {929-950},
publisher = {Association des Annales de l'Institut Fourier},
title = {Reductive group actions on affine varieties and their doubling},
url = {http://eudml.org/doc/75151},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Panyushev, Dmitri I.
TI - Reductive group actions on affine varieties and their doubling
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 929
EP - 950
AB - We study $G$-actions of the form $(G:X\times X^{*})$, where $X^{*}$ is the dual (to $X$) $G$-variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action $(G:X)$ is given. It is shown that the doubled actions have a number of nice properties, if $X$ is spherical or of complexity one.
LA - eng
KW - algebra of invariants; doubled actions; complexity of the action; spherical variety
UR - http://eudml.org/doc/75151
ER -

References

top
  1. [B1] M. BRION, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple, Ann. Inst. Fourier, 33-1 (1983), 1-27. Zbl0475.14038MR85a:14031
  2. [B2] M. BRION, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J., 58 (1989), 397-424. Zbl0701.14052MR90i:14048
  3. [HH] R. HOWE, R. HUANG, Projective invariants of four subspaces, Preprint. Zbl0852.15021
  4. [KR] B. KOSTANT, S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
  5. [Li] P. LITTELMANN, On spherical double cones, J. Algebra, 166 (1994), 142-157. Zbl0823.20040MR95c:14066
  6. [Lu] D. LUNA, Adhérences d'orbite et invariants, Invent. Math., 29 (1975), 231-238. Zbl0315.14018MR51 #12879
  7. [LR] D. LUNA, R.W. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. Zbl0444.14010MR80k:14049
  8. [P1] D. PANYUSHEV, Orbits of maximal dimension of solvable subgroups of reductive algebraic groups and reduction for U-invariants, Math. USSR-Sb., 60 (1988), 365-375. Zbl0663.20044MR88h:14047
  9. [P2] D. PANYUSHEV, Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269. Zbl0706.14032MR92e:14046
  10. [P3] D. PANYUSHEV, Complexity and rank of double cones and tensor product decompositions, Comment. Math. Helv., 68 (1993), 455-468. Zbl0804.14024MR94g:14025
  11. [P4] D. PANYUSHEV, Complexity and nilpotent orbits, Manuscripta Math., 83 (1994), 223-237. Zbl0822.14024MR95e:14039
  12. [P5] D. PANYUSHEV, A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675. Zbl0820.14033MR96d:13005
  13. [P6] D. PANYUSHEV, Good properties of algebras of invariants and defect of linear representations, J. Lie Theory, 5 (1995). Zbl0845.14008MR96j:14034
  14. [Po1] V.L. POPOV, A stability criterion for an action of a semisimple group on a factorial variety, Math. USSR-Izv., 4 (1971), 527-535. Zbl0261.14011
  15. [Po2] V.L. POPOV, Contractions of the actions of reductive algebraic groups, Math. USSR-Sbornik, 58 (1987), 311-335. Zbl0627.14033
  16. [Ri] R.W. RICHARDSON, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc., 25 (1982), 1-28. Zbl0467.14008MR83i:14041
  17. [Sch1] G. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12. Zbl0391.20033MR80c:14008
  18. [Sch2] G. SCHWARZ, Lifting smooth homotopies of orbit spaces, Publ. Math. I.H.E.S., 51 (1980), 37-135. Zbl0449.57009MR81h:57024
  19. [VP1] E.B. VINBERG, V.L. POPOV, On a class of quasihomogeneous affine varieties, Math. USSR-Izv., 6 (1972), 743-758. Zbl0255.14016MR47 #1815
  20. [VP2] V.L. POPOV, E.B. VINBERG, Invariant theory, in : “Encyclopaedia Math. Sci.” 55, Berlin, Springer, 1994, 123-284. Zbl0789.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.