When is a pseudo-differential equation solvable ?

Nicolas Lerner

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 443-460
  • ISSN: 0373-0956

Abstract

top
This paper begins with a broad survey of the state of the art in matters of solvability for differential and pseudo-differential equations. Then we proceed with a Hilbertian lemma which we use to prove a new solvability result.

How to cite

top

Lerner, Nicolas. "When is a pseudo-differential equation solvable ?." Annales de l'institut Fourier 50.2 (2000): 443-460. <http://eudml.org/doc/75425>.

@article{Lerner2000,
abstract = {This paper begins with a broad survey of the state of the art in matters of solvability for differential and pseudo-differential equations. Then we proceed with a Hilbertian lemma which we use to prove a new solvability result.},
author = {Lerner, Nicolas},
journal = {Annales de l'institut Fourier},
keywords = {solvability; energy estimations; psi-condition},
language = {eng},
number = {2},
pages = {443-460},
publisher = {Association des Annales de l'Institut Fourier},
title = {When is a pseudo-differential equation solvable ?},
url = {http://eudml.org/doc/75425},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Lerner, Nicolas
TI - When is a pseudo-differential equation solvable ?
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 443
EP - 460
AB - This paper begins with a broad survey of the state of the art in matters of solvability for differential and pseudo-differential equations. Then we proceed with a Hilbertian lemma which we use to prove a new solvability result.
LA - eng
KW - solvability; energy estimations; psi-condition
UR - http://eudml.org/doc/75425
ER -

References

top
  1. [BF] R. BEALS, C. FEFFERMAN, On local solvability of linear partial differential equations, Ann. of Math., 97 (1973), 482-498. Zbl0256.35002MR50 #5233
  2. [Bo] J.M. BONY, Caractérisation des opérateurs pseudo-différentiels, Séminaire EDP, École polytechnique, exposé 23, 1996-1997. Zbl1061.35531
  3. [BC] J.M. BONY, J.Y. CHEMIN, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. SMF, 122 (1994), 77-118. Zbl0798.35172MR95a:35152
  4. [D1] N. DENCKER, The solvability of nonsolvable operators, Saint-Jean-de-Monts meeting, 1996. Zbl0885.35151MR97i:35201
  5. [D2] N. DENCKER, A class of solvable operators, "Geometrical optics and related topics", PNLDE series, volume 32, Birkhäuser, editors F. Colombini, N. Lerner, 1997. Zbl1101.35405
  6. [D3] N. DENCKER, Estimates and solvability, Arkiv för Matematik, 37, n° 2 (1999), 221-243. Zbl1021.35137
  7. [H1] L. HÖRMANDER, Differential equations without solutions, Math. Ann., 140 (1960), 169-173. Zbl0093.28903MR26 #5279
  8. [H2] L. HÖRMANDER, The analysis of linear partial differential operators, Springer-Verlag, 1985. Zbl0601.35001
  9. [H3] L. HÖRMANDER, On the solvability of pseudodifferential equations, pp. 183-213, "Structure of solutions of differential equations", World Scientific Singapore, New Jersey, London, Hong-Kong, editors M. Morimoto and T. Kawai, 1996. Zbl0897.35082MR98f:35166
  10. [L1] N. LERNER, Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math., 128 (1988), 243-258. Zbl0682.35112MR90a:35242
  11. [L2] N. LERNER, An iff solvability condition for the oblique derivative problem, Séminaire EDP, École Polytechnique, exposé 18, 1990-1991. Zbl0737.35171
  12. [L3] N. LERNER, Nonsolvability in L2 for a first order operator satisfying condition (ψ), Ann. of Math., 139 (1994), 363-393. Zbl0818.35152MR95g:35222
  13. [L4] N. LERNER, The Wick calculus of pseudo-differential operators and energy estimates, "New trends in microlocal analysis", editors J.-M. Bony, M. Morimoto, Springer-Verlag, 1997. Zbl0893.35144MR99i:35187
  14. [L5] N. LERNER, Energy methods via coherent states and advanced pseudo-differential calculus, "Multidimensional complex analysis and partial differential equations", editors P.D. Cordaro, H. Jacobowitz, S. Gindikin, AMS, 1997. Zbl0885.35152MR98d:35244
  15. [L6] N. LERNER, Perturbation and energy estimates, Ann. Sc. ENS, 31 (1998), 843-886. Zbl0927.35139MR2000b:35289
  16. [Lw] H. LEWY, An example of a smooth linear partial differential equation without solution, Ann. of Math., 66, 1 (1957) 155-158. Zbl0078.08104MR19,551d
  17. [Mi] S. MIZOHATA, Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ., 1 (1962), 272-302. Zbl0106.29601MR26 #440
  18. [NT1] L. NIRENBERG, F. TREVES, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math., 16 (1963), 331-351. Zbl0117.06104MR29 #348
  19. [NT2] L. NIRENBERG, F. TREVES, On local solvability of linear partial differential equations, Comm. Pure Appl. Math., 23 (1970), 1-38 and 459-509; 24 (1971), 279-288. Zbl0221.35001MR41 #9064a
  20. [S] H. SMITH, An elementary proof of local solvability in two dimensions under condition (ψ), Ann. of Math., 136 (1992), 335-337. Zbl0763.35115MR93k:35285

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.