Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations

Y. Kosmann-Schwarzbach; F. Magri

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 49, Issue: 4, page 433-460
  • ISSN: 0246-0211

How to cite

top

Kosmann-Schwarzbach, Y., and Magri, F.. "Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations." Annales de l'I.H.P. Physique théorique 49.4 (1988): 433-460. <http://eudml.org/doc/76431>.

@article{Kosmann1988,
author = {Kosmann-Schwarzbach, Y., Magri, F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lie algebras; semi-direct product; twilled extensions; dual extensions; representations; Drinfel'd bigebras; Yang-Baxter equations; quasitriangular bigebras; Schouten curvature},
language = {eng},
number = {4},
pages = {433-460},
publisher = {Gauthier-Villars},
title = {Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations},
url = {http://eudml.org/doc/76431},
volume = {49},
year = {1988},
}

TY - JOUR
AU - Kosmann-Schwarzbach, Y.
AU - Magri, F.
TI - Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 49
IS - 4
SP - 433
EP - 460
LA - eng
KW - Lie algebras; semi-direct product; twilled extensions; dual extensions; representations; Drinfel'd bigebras; Yang-Baxter equations; quasitriangular bigebras; Schouten curvature
UR - http://eudml.org/doc/76431
ER -

References

top
  1. [1] R. Aminou and Y. Kosmann-Schwarzbach, Bigèbres de Lie, doubles et carrés. Annales Inst. Henri Poincaré, série A (Physique théorique), t. 49, n° 4, 1988, p. 461-478. Zbl0667.16006MR988947
  2. [2] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 1, Algèbres de Lie, Hermann, Paris, 1960. Zbl0199.35203MR132805
  3. [3] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 2 et 3, Hermann, Paris, 1972. Zbl0244.22007MR573068
  4. [4] V.G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Soviet Math. Dokl., t. 27, no. 1, 1982, p. 68-71. Zbl0526.58017MR688240
  5. [5] V.G. Drinfeld, Quantum groups. Proceedings Int. Congress Math. (Berkeley, 1986), Amer. Math. Society, 1988. Zbl0617.16004MR934283
  6. [6] I.M. Gelfand and I. Ya. Dorfman, Hamiltonian operators and the classical Yang–Baxter equation. Funct. Anal. Appl., t. 16, no. 4, 1982, p. 241-248. Zbl0527.58018MR684122
  7. [7] Y. Kosmann-Schwarzbach, Poisson-Drinfeld groups, in Topics in Soliton theory and exactly solvable nonlinear equations, M. Ablowitz, B. Fuchssteiner and M. Kruskal, eds., World Scientific, Singapore, 1987. Zbl0726.58021MR900393
  8. [8] F. Magri, Pseudocociclo di Poisson e strutture PN gruppale, applicazione al reticolo di Toda, unpublished manuscript, Milan, 1983. 
  9. [9] M.A. Semenov-Tian-Shansky, What is a classical r-matrix? Funct. Anal. Appl., t. 17, no. 4, 1983, p. 259-272. Zbl0535.58031
  10. [10] M.A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions. Publ. RIMS (Kyoto University), t. 21, 1985, p. 1237-1260. Zbl0674.58038MR842417
  11. [11] M.A. Semenov-Tian-Shansky, Classical r-matrices, Lax equations, Poisson-Lie groups and dressing transformations, in Field theory, quantum gravity and strings, II, H. J. de Vega and N. Sanchez, eds., Lecture notes in physics, Springer Verlag, Berlin, t. 280, 1987, p. 174-214. Zbl0666.22010MR905898
  12. [12] E.K. Sklyanin, Quantum version of the method of inverse scattering problem. Journal of Soviet Math., t. 19, no. 5, 1982, p. 1546-1596. Zbl0497.35072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.