Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras

Johannes Huebschmann

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 87-102
  • ISSN: 0137-6934

Abstract

top
Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra iff the almost complex structure is integrable. Such G-algebras, endowed with a generator turning them into a B(atalin-)V(ilkovisky)-algebra, occur on the B-side of the mirror conjecture. We generalize a result of Koszul to those dG-algebras which arise from twilled LR-algebras. A special case thereof explains the relationship between holomorphic volume forms and exact generators for the corresponding dG-algebra and thus yields in particular a conceptual proof of the Tian-Todorov lemma. We give a differential homological algebra interpretation for twilled LR-algebras and by means of it we elucidate the notion of a generator in terms of homological duality for differential graded LR-algebras.

How to cite

top

Huebschmann, Johannes. "Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras." Banach Center Publications 51.1 (2000): 87-102. <http://eudml.org/doc/209047>.

@article{Huebschmann2000,
abstract = {Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra iff the almost complex structure is integrable. Such G-algebras, endowed with a generator turning them into a B(atalin-)V(ilkovisky)-algebra, occur on the B-side of the mirror conjecture. We generalize a result of Koszul to those dG-algebras which arise from twilled LR-algebras. A special case thereof explains the relationship between holomorphic volume forms and exact generators for the corresponding dG-algebra and thus yields in particular a conceptual proof of the Tian-Todorov lemma. We give a differential homological algebra interpretation for twilled LR-algebras and by means of it we elucidate the notion of a generator in terms of homological duality for differential graded LR-algebras.},
author = {Huebschmann, Johannes},
journal = {Banach Center Publications},
keywords = {differential graded Lie algebra; twilled Lie-Rinehart algebra; Lie-Rinehart algebra; Batalin-Vilkovisky algebra; Gerstenhaber algebra; mirror conjecture; Calabi-Yau manifold; Lie bialgebra; almost complex manifold},
language = {eng},
number = {1},
pages = {87-102},
title = {Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras},
url = {http://eudml.org/doc/209047},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Huebschmann, Johannes
TI - Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 87
EP - 102
AB - Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra iff the almost complex structure is integrable. Such G-algebras, endowed with a generator turning them into a B(atalin-)V(ilkovisky)-algebra, occur on the B-side of the mirror conjecture. We generalize a result of Koszul to those dG-algebras which arise from twilled LR-algebras. A special case thereof explains the relationship between holomorphic volume forms and exact generators for the corresponding dG-algebra and thus yields in particular a conceptual proof of the Tian-Todorov lemma. We give a differential homological algebra interpretation for twilled LR-algebras and by means of it we elucidate the notion of a generator in terms of homological duality for differential graded LR-algebras.
LA - eng
KW - differential graded Lie algebra; twilled Lie-Rinehart algebra; Lie-Rinehart algebra; Batalin-Vilkovisky algebra; Gerstenhaber algebra; mirror conjecture; Calabi-Yau manifold; Lie bialgebra; almost complex manifold
UR - http://eudml.org/doc/209047
ER -

References

top
  1. [1] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, alg-geom/9710032, Internat. Math. Res. Notices 4 (1998), 201-215. Zbl0914.58004
  2. [2] I. A. Batalin and G. S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567-2582. 
  3. [3] I. A. Batalin and G. S. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B 234 (1984), 106-124. 
  4. [4] I. A. Batalin and G. S. Vilkovisky, Existence theorem for gauge algebra, Jour. Math. Phys. 26 (1985), 172-184. 
  5. [5] F. A. Bogomolov, Hamiltonian Kähler varieties, Sov. Math. Dokl. 19 (1978), 1462-1465; translated from: Dokl. Akad. Nauk SSSR 243 (1978), 1101-1104. 
  6. [6] F. A. Bogomolov, Kähler manifolds with trivial canonical class, preprint, Institut des Hautes Etudes Scientifiques 1981, pp. 1-32. 
  7. [7] A. Cannas de Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, Volume 10, Amer. Math. Soc. 1999. Zbl1135.58300
  8. [8] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. Zbl0031.24803
  9. [9] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA 41 (1955), 641-644. Zbl0065.16502
  10. [10] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I: Derivations in the graded ring of differential forms, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 338-359. 
  11. [11] A. Frölicher and A. Nijenhuis, Some new cohomological invariants for complex manifolds, I, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 540-564. Zbl0072.40602
  12. [12] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288. Zbl0131.27302
  13. [13] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups and algebraic deformations, in: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds.), Cont. Math. 134, American Mathematical Society, Providence, (1992), 51-92. Zbl0788.17009
  14. [14] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys. 195 (1994), 265-285. Zbl0807.17026
  15. [15] W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. of Math. 34 (1990), 337-367. Zbl0707.32004
  16. [16] J. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris 236 (1953), 1935-1937. Zbl0050.03201
  17. [17] J. Huebschmann, Poisson cohomology and quantization, J. für die Reine und Angew. Math. 408 (1990), 57-113. Zbl0699.53037
  18. [18] J.. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. für die Reine und Angew. Math. 510 (1999), 103-159. Zbl1034.53083
  19. [19] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin- Vilkovisky algebras, Annales de l'Institut Fourier 48 (1998), 425-440. Zbl0973.17027
  20. [20] J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, in: Festschrift in honor of J. Stasheff's 60th birthday, Cont. Math. 227 (1999), 145-176, Amer. Math. Soc., Providence R. I. Zbl0946.17008
  21. [21] J. Huebschmann, Twilled Lie-Rinehart algebras and differential Batalin-Vilkovisky algebras, math.DG/9811069. Zbl1015.17023
  22. [22] J. Huebschmann, The modular class and master equation for Lie-Rinehart bialgebras, in preparation. Zbl1034.53083
  23. [23] J. Huebschmann and J. D. Stasheff, Formal solution of the master equation via HPT and deformation theory, math.AG/9906036. Zbl1036.17016
  24. [24] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I. II., Ann. of Math. 67 (1958), 328-401, 403-466. Zbl0128.16901
  25. [25] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae 41 (1995), 153-165. Zbl0837.17014
  26. [26] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Annales de l'Institut Fourier 46 (1996), 1243-1274. Zbl0858.17027
  27. [27] Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold, Letters in Math. Physics 38 (1996), 421-428. Zbl1005.53060
  28. [28] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations, Annales Inst. H. Poincaré Série A (Physique théorique) 49 (1988), 433-460. Zbl0667.16005
  29. [29] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985), 251-271. 
  30. [30] B. H. Lian and G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys. 154 (1993), 613-646. Zbl0780.17029
  31. [31] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. of Diff. Geom. 31 (1990), 501-526. Zbl0673.58018
  32. [32] K. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid, preprint 1998; math.DG/9808081. 
  33. [33] K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. Zbl0844.22005
  34. [34] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften No. 114, Springer, Berlin, 1963. 
  35. [35] S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equation, Pac. J. of Math. 141 (1990), 311-332. Zbl0735.17017
  36. [36] Yu. I. Manin, Three constructions of Frobenius manifolds, Atiyah-Festschrift (to appear), math.QA/9801006. 
  37. [37] T. Mokri, Matched pairs of Lie algebroids Glasgow Math. J. 39 (1997), 167-181. Zbl0886.22012
  38. [38] R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. III (1961), 130-137. Zbl0126.03404
  39. [39] G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. Zbl0113.26204
  40. [40] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, math. AG/9802006. 
  41. [41] P. Stachura, Double Lie algebras and Manin triples, q-alg/9712040. 
  42. [42] J. D. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt (eds.), Mathematical Physics Studies Vol. 20, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997, 271-284. Zbl1149.81359
  43. [43] G. Tian, A note on Kaehler manifolds with c 1 = 0 , preprint. 
  44. [44] A. N. Todorov, The Weil-Petersson geometry of the moduli space of su(n) (n ≥ 3) (Calabi-Yau) manifolds, I., Comm. Math. Phys. 126 (1989), 325-346. Zbl0688.53030
  45. [45] E. Witten, Mirror manifolds and topological field theory, in: Essays on mirror manifolds, S. T. Yau (ed.), International Press Co. Hong Kong, 1992, 230-310. 
  46. [46] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. Zbl0941.17016
  47. [47] S. Zakrzewski, Poisson structures on the Poincaré groups, Comm. Math. Phys. 185 (1997), 285-311. Zbl0874.22017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.