Limiting absorption principle for the Dirac operator

Anne Boutet de Monvel-Berthier; Dragos Manda; Radu Purice

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 58, Issue: 4, page 413-431
  • ISSN: 0246-0211

How to cite

top

Boutet de Monvel-Berthier, Anne, Manda, Dragos, and Purice, Radu. "Limiting absorption principle for the Dirac operator." Annales de l'I.H.P. Physique théorique 58.4 (1993): 413-431. <http://eudml.org/doc/76612>.

@article{BoutetdeMonvel1993,
author = {Boutet de Monvel-Berthier, Anne, Manda, Dragos, Purice, Radu},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {limiting absorption principle; spectrum of the Dirac Hamiltonian; long- range potentials; Coulombian singularities; non-local potentials},
language = {eng},
number = {4},
pages = {413-431},
publisher = {Gauthier-Villars},
title = {Limiting absorption principle for the Dirac operator},
url = {http://eudml.org/doc/76612},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Boutet de Monvel-Berthier, Anne
AU - Manda, Dragos
AU - Purice, Radu
TI - Limiting absorption principle for the Dirac operator
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 4
SP - 413
EP - 431
LA - eng
KW - limiting absorption principle; spectrum of the Dirac Hamiltonian; long- range potentials; Coulombian singularities; non-local potentials
UR - http://eudml.org/doc/76612
ER -

References

top
  1. [1] W.O. Amrein, A. Boutet De MONVEL-BERTHIER and V. Georgescu, Notes on the N-body problem, I, preprint de l'Université de Genève, UGVA-DPT1988/11-598 a, 1988, pp. 1-156. 
  2. [2] E. Balslev and B. Helffer, Limiting absorption principle and resonances for the Dirac operator, Advances to Applied Mathematics, 1991 (to appear). Zbl0756.35062MR1243034
  3. [3] J. Bergh and J. Löfström, Interpolation spaces: an introduction, Springer-Verlag, 1976. Zbl0344.46071MR482275
  4. [4] A. Boutet de Monvel-Berthier and V. Georgescu, Locally conjugate operators, boundary values of the resolvent and Wave Operators, C. R. Acad. Sci. Paris, Tome 313, Series I, 1991, pp. 13-18. Zbl0733.47026MR1115939
  5. [5] A. Boutet de Monvel-Berthier and V. Georgescu, Spectral and scattering theory by the conjugate operator method, Algebra and Analysis, Vol. 4, 3, 1992, pp. 73-116 ( = St. Petersburg J., 1992) and Universität Bielefeld, BiBoS, preprint n° 477/91. Zbl0791.47010MR1190772
  6. [6] A. Boutet de Monvel-Berthier, V. Georgescu and M. Mantoiu, Locally smooth operators and the limiting absorption principle for N body hamiltonians, Reviews in Math. Phys., Vol. 5, 1, 1993, pp. 1-90 and Universität Bielefeld, BiBoS, preprint n° 433/1990. Zbl0806.47063MR1219531
  7. [7] A. Boutet de Monvel-Berthier, D. Manda and R. Purice, The commutator method for form-relatively compact perturbations, Letters in Math. Physics, Vol. 22, 1991, pp. 211-223. Zbl0752.35042MR1129176
  8. [8] E.B. Davies, One parameter semigroups, Academic Press, 1980. Zbl0457.47030MR591851
  9. [9] W. Faris, Self-adjoint operators, Lecture Notes in Math., 433, Springer, 1975. Zbl0317.47016MR467348
  10. [10] C. Itzykson and J.B. Zuber, Quantum field theory, Mc Graw-Hill, 1980. Zbl0453.05035MR585517
  11. [11] T. Kato, Perturbations of linear operators, Springer-Verlag, 1966. Zbl0148.12601
  12. [12] T. Kato and K. Yajima, Dirac equation with moving nuclei, Ann. Inst. H. Poincaré, Vol. 54, (2), 1991, pp. 209-221. Zbl0748.35033MR1110653
  13. [13] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Vol. 78, 1981, pp. 391-408. Zbl0489.47010MR603501
  14. [14] E. Mourre, Opérateurs conjugués et propriétés de propagation, Comm. Math. Phys., Vol. 91, 1983, pp. 279-300. Zbl0543.47041MR723552
  15. [15] G. Nenciu, Distinguished self-adjoint extensions for Dirac operator with potential dominated by multicenter Coulomb potentials, Helv. Phys. Acta, Vol. 50, 1977, pp. 1-3. MR462346
  16. [16] P. Perry, I. Sigal and B. Simon, Spectral analysis for N-body operators, Ann. Math., Vol. 114, 1981, p. 519-567. Zbl0477.35069MR634428
  17. [17] M. Reed and B. Simon, Methods of modern mathematical Physics, Vol. II, Academic Press, New York, 1975. 
  18. [18] M. Reed and B. Simon, Methods of modern mathematical Physics, Vol. IV, Academic Press, New York, 1978. 
  19. [19] B. Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton University Press, 1971. Zbl0232.47053MR455975
  20. [20] B. Thaller and V. Enss, Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. H. Poincaré, Vol. 45, (2), 1986, pp. 147-171. Zbl0615.47008MR866913
  21. [21] V. Vogelsang, Remark on essential self-adjointness of Dirac operators with Coulomb Potentials, Math. Z., Vol. 196, 1987, pp. 517-521. Zbl0617.35127MR917234
  22. [22] V. Vogelsang, Self-adjoint extensions of Dirac operators with non spherically symmetric potentials in Coulomb scattering, Int. Eq. and Op. Theor., Vol. 10, 1987, pp. 841-858. Zbl0643.47028
  23. [23] V. Vogelsang, Absolutely continuous spectrum of Dirac operators for long-range potentials, J. Func. Anal., Vol. 76, 1988, pp. 67-86. Zbl0652.47030MR923045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.