Propagation estimates for Dirac operators and application to scattering theory
- [1] Université Bordeaux I, Institut de Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, 351 cours de la libération, 33405 Talence Cedex (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 2021-2083
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDaudé, Thierry. "Propagation estimates for Dirac operators and application to scattering theory." Annales de l’institut Fourier 54.6 (2004): 2021-2083. <http://eudml.org/doc/116167>.
@article{Daudé2004,
abstract = {In this paper, we prove propagation estimates for a massive Dirac equation in flat
spacetime. This allows us to construct the asymptotic velocity operator and to
analyse its spectrum. Eventually, using this new information, we are able to obtain
complete scattering results; that is to say we prove the existence and the asymptotic
completeness of the Dollard modified wave operators.},
affiliation = {Université Bordeaux I, Institut de Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, 351 cours de la libération, 33405 Talence Cedex (France)},
author = {Daudé, Thierry},
journal = {Annales de l’institut Fourier},
keywords = {Partial differential equations; spectral theory; scattering theory; Dirac's equation; propagation estimates; Mourre theory; Dollard modified wave operators},
language = {eng},
number = {6},
pages = {2021-2083},
publisher = {Association des Annales de l'Institut Fourier},
title = {Propagation estimates for Dirac operators and application to scattering theory},
url = {http://eudml.org/doc/116167},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Daudé, Thierry
TI - Propagation estimates for Dirac operators and application to scattering theory
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 2021
EP - 2083
AB - In this paper, we prove propagation estimates for a massive Dirac equation in flat
spacetime. This allows us to construct the asymptotic velocity operator and to
analyse its spectrum. Eventually, using this new information, we are able to obtain
complete scattering results; that is to say we prove the existence and the asymptotic
completeness of the Dollard modified wave operators.
LA - eng
KW - Partial differential equations; spectral theory; scattering theory; Dirac's equation; propagation estimates; Mourre theory; Dollard modified wave operators
UR - http://eudml.org/doc/116167
ER -
References
top- W. Amrein, A. Boutet de Monvel, V. Georgescu, -groups, commutator methods and spectral theory of -body hamiltonians, (1996), Birkhäuser Verlag Zbl0962.47500
- W. Amrein, A. Boutet de Monvel-Berthier, V. Georgescu, On Mourre's approach of spectral theory, Helv. Phys. Acta 62 (1989), 1-20 Zbl0791.47026MR991005
- E. Baslev, B. Helffer, Limiting absorption principle and resonances for the Dirac operator, Adv. in Appl. Math 13 (1992), 186-215 Zbl0756.35062MR1162140
- A. Berthier, V. Georgescu, On the point spectrum of Dirac operators, J. Func. Anal 71 (1987), 309-338 Zbl0655.47043MR880983
- A. Boutet de Monvel-Berthier, D. Manda, R. Purice, Limiting absorption principle for the Dirac operator, Ann. Inst. Henri Poincaré, Physique Théorique 58 (1993), 413-431 Zbl0789.35134MR1241704
- E.B. Davies, Spectral Theory and Differential Operators, Cambridge studies in advanced mathematics 2 (1995) Zbl0893.47004MR1349825
- J. Derezi#x0144;ski, Asymptotic completeness for N-particle long-range quantum sytems, Ann. of Math 138 (1993), 427-476 Zbl0844.47005
- J. Derezi#x0144;ski, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, (1997), Springer-Verlag Zbl0899.47007MR1459161
- J. Dollard, G. Velo, Asymptotic behaviour of a Dirac particle in a Coulomb field, II, Nuovo Cimento 45 (1966), 801-812
- V. Enss, Asymptotic completeness for quantum-mechanical potential scattering, I: Short range potentials., Comm. Math. Phys 61 (1978), 285-291 Zbl0389.47005MR523013
- V. Enss, Asymptotic completeness for quantum-mechanical potential scattering, II: Singular and Long range potentials, Ann. Phys 119 (1979), 117-132 Zbl0408.47009MR535624
- V. Enss, B. Thaller, Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. Henri Poincaré. Physique Théorique 45 (1986), 147-171 Zbl0615.47008MR866913
- Y. Gâtel, D.R. Yafaev, Scattering theory for the Dirac operator with a long-range electromagnetic potential, J. Func. Anal 184 (2001), 136-176 Zbl0996.35056MR1846785
- V. Georgescu, C. Gérard, On the virial theorem in Quantum Mechanics, Comm. Math. Phys 208 (1999), 275-281 Zbl0961.81009MR1729087
- V. Georgescu, M. Mântoiu, On the spectral theory of singular Dirac type hamiltonians, J. Operator Theory 46 (2001), 289-321 Zbl0993.35070MR1870409
- C. Gérard, I. Laba, Multiparticle quantum scattering in constant magnetic fields, 90 (2002), American Mathematical Society Zbl1044.81123MR1871447
- C. Gérard, F. Nier, Scattering theory for the perturbation of periodic Schrödinger operators, J. Math. Kyoto Univ 38 (1998), 595-634 Zbl0934.35111MR1669979
- G.M. Graf, Asymptotic completeness for N-body short range quantum systems: A new proof, Comm. Math. Phys 132 (1990), 73-101 Zbl0726.35096MR1069201
- D. Häfner, Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Mathematicae 421 (2003) Zbl1075.35093MR2031494
- D. Häfner, J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys 16 (2004), 29-123 Zbl1064.83036MR2047861
- B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Lecture Notes in Physics 345 (1989), 118-197 Zbl0699.35189MR1037319
- W. Hunziker, I.M. Sigal, A. Soffer, Minimal escape velocities, Comm. Partial Diff. Equ 24 (1999), 2279-2295 Zbl0944.35014MR1720738
- A. Iftimovici, M. Mântoiu, Limiting Absorption Principle at Critical Values for the Dirac Operator, Lett. Math. Phys 49 (1999), 235-243 Zbl0957.47029MR1743451
- F. Melnyk, Scattering on Reissner-Nordström metric for massive charged spin fields, Ann. Henri Poincaré 4 (2003), 813-846 Zbl1106.83015MR2016993
- E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys 78 (1981), 391-408 Zbl0489.47010MR603501
- PL. Muthuramalingam, K.B. Sinha, Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long range potentials, J. Indian Math. Soc 50 (1986), 103-130 Zbl0688.35070MR989018
- J.-P. Nicolas, Scattering of linear Dirac fields by a pherically symmetric Black-Hole, Ann. Inst. Henri Poincaré. Physique Théorique 62 (1995), 145-179 Zbl0826.53072MR1317184
- M. Reed, B. Simon, Methods of modern mathematical physics. I, (1972), Academic Press Zbl0401.47001MR751959
- D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cimento, A 61 (1969) MR246603
- I.M. Sigal, A. Soffer, The N-particle scattering problem: asymptotic completeness for short-range quantum systems, Ann. of Math 125 (1987), 35-108 Zbl0646.47009MR898052
- I.M. Sigal, A. Soffer, Local decay and velocity bounds, (1988)
- B. Thaller, The Dirac Equation, (1992), Springer-Verlag Zbl0765.47023MR1219537
- M. Reed, B. Simon, Methods of modern mathematical physics. II, (1975), Academic Press Zbl0401.47001MR751959
- M. Reed, B. Simon, Methods of modern mathematical physics. III, (1979), Academic Press Zbl0405.47007MR529429
- M. Reed, B. Simon, Methods of modern mathematical physics. IV, (1978), Academic Press Zbl0401.47001MR751959
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.