Propagation estimates for Dirac operators and application to scattering theory

Thierry Daudé[1]

  • [1] Université Bordeaux I, Institut de Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, 351 cours de la libération, 33405 Talence Cedex (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 2021-2083
  • ISSN: 0373-0956

Abstract

top
In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.

How to cite

top

Daudé, Thierry. "Propagation estimates for Dirac operators and application to scattering theory." Annales de l’institut Fourier 54.6 (2004): 2021-2083. <http://eudml.org/doc/116167>.

@article{Daudé2004,
abstract = {In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.},
affiliation = {Université Bordeaux I, Institut de Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, 351 cours de la libération, 33405 Talence Cedex (France)},
author = {Daudé, Thierry},
journal = {Annales de l’institut Fourier},
keywords = {Partial differential equations; spectral theory; scattering theory; Dirac's equation; propagation estimates; Mourre theory; Dollard modified wave operators},
language = {eng},
number = {6},
pages = {2021-2083},
publisher = {Association des Annales de l'Institut Fourier},
title = {Propagation estimates for Dirac operators and application to scattering theory},
url = {http://eudml.org/doc/116167},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Daudé, Thierry
TI - Propagation estimates for Dirac operators and application to scattering theory
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 2021
EP - 2083
AB - In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.
LA - eng
KW - Partial differential equations; spectral theory; scattering theory; Dirac's equation; propagation estimates; Mourre theory; Dollard modified wave operators
UR - http://eudml.org/doc/116167
ER -

References

top
  1. W. Amrein, A. Boutet de Monvel, V. Georgescu, C 0 -groups, commutator methods and spectral theory of N -body hamiltonians, (1996), Birkhäuser Verlag Zbl0962.47500
  2. W. Amrein, A. Boutet de Monvel-Berthier, V. Georgescu, On Mourre's approach of spectral theory, Helv. Phys. Acta 62 (1989), 1-20 Zbl0791.47026MR991005
  3. E. Baslev, B. Helffer, Limiting absorption principle and resonances for the Dirac operator, Adv. in Appl. Math 13 (1992), 186-215 Zbl0756.35062MR1162140
  4. A. Berthier, V. Georgescu, On the point spectrum of Dirac operators, J. Func. Anal 71 (1987), 309-338 Zbl0655.47043MR880983
  5. A. Boutet de Monvel-Berthier, D. Manda, R. Purice, Limiting absorption principle for the Dirac operator, Ann. Inst. Henri Poincaré, Physique Théorique 58 (1993), 413-431 Zbl0789.35134MR1241704
  6. E.B. Davies, Spectral Theory and Differential Operators, Cambridge studies in advanced mathematics 2 (1995) Zbl0893.47004MR1349825
  7. J. Derezi#x0144;ski, Asymptotic completeness for N-particle long-range quantum sytems, Ann. of Math 138 (1993), 427-476 Zbl0844.47005
  8. J. Derezi#x0144;ski, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, (1997), Springer-Verlag Zbl0899.47007MR1459161
  9. J. Dollard, G. Velo, Asymptotic behaviour of a Dirac particle in a Coulomb field, II, Nuovo Cimento 45 (1966), 801-812 
  10. V. Enss, Asymptotic completeness for quantum-mechanical potential scattering, I: Short range potentials., Comm. Math. Phys 61 (1978), 285-291 Zbl0389.47005MR523013
  11. V. Enss, Asymptotic completeness for quantum-mechanical potential scattering, II: Singular and Long range potentials, Ann. Phys 119 (1979), 117-132 Zbl0408.47009MR535624
  12. V. Enss, B. Thaller, Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. Henri Poincaré. Physique Théorique 45 (1986), 147-171 Zbl0615.47008MR866913
  13. Y. Gâtel, D.R. Yafaev, Scattering theory for the Dirac operator with a long-range electromagnetic potential, J. Func. Anal 184 (2001), 136-176 Zbl0996.35056MR1846785
  14. V. Georgescu, C. Gérard, On the virial theorem in Quantum Mechanics, Comm. Math. Phys 208 (1999), 275-281 Zbl0961.81009MR1729087
  15. V. Georgescu, M. Mântoiu, On the spectral theory of singular Dirac type hamiltonians, J. Operator Theory 46 (2001), 289-321 Zbl0993.35070MR1870409
  16. C. Gérard, I. Laba, Multiparticle quantum scattering in constant magnetic fields, 90 (2002), American Mathematical Society Zbl1044.81123MR1871447
  17. C. Gérard, F. Nier, Scattering theory for the perturbation of periodic Schrödinger operators, J. Math. Kyoto Univ 38 (1998), 595-634 Zbl0934.35111MR1669979
  18. G.M. Graf, Asymptotic completeness for N-body short range quantum systems: A new proof, Comm. Math. Phys 132 (1990), 73-101 Zbl0726.35096MR1069201
  19. D. Häfner, Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Mathematicae 421 (2003) Zbl1075.35093MR2031494
  20. D. Häfner, J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys 16 (2004), 29-123 Zbl1064.83036MR2047861
  21. B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Lecture Notes in Physics 345 (1989), 118-197 Zbl0699.35189MR1037319
  22. W. Hunziker, I.M. Sigal, A. Soffer, Minimal escape velocities, Comm. Partial Diff. Equ 24 (1999), 2279-2295 Zbl0944.35014MR1720738
  23. A. Iftimovici, M. Mântoiu, Limiting Absorption Principle at Critical Values for the Dirac Operator, Lett. Math. Phys 49 (1999), 235-243 Zbl0957.47029MR1743451
  24. F. Melnyk, Scattering on Reissner-Nordström metric for massive charged spin 1 2 fields, Ann. Henri Poincaré 4 (2003), 813-846 Zbl1106.83015MR2016993
  25. E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys 78 (1981), 391-408 Zbl0489.47010MR603501
  26. PL. Muthuramalingam, K.B. Sinha, Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long range potentials, J. Indian Math. Soc 50 (1986), 103-130 Zbl0688.35070MR989018
  27. J.-P. Nicolas, Scattering of linear Dirac fields by a pherically symmetric Black-Hole, Ann. Inst. Henri Poincaré. Physique Théorique 62 (1995), 145-179 Zbl0826.53072MR1317184
  28. M. Reed, B. Simon, Methods of modern mathematical physics. I, (1972), Academic Press Zbl0401.47001MR751959
  29. D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cimento, A 61 (1969) MR246603
  30. I.M. Sigal, A. Soffer, The N-particle scattering problem: asymptotic completeness for short-range quantum systems, Ann. of Math 125 (1987), 35-108 Zbl0646.47009MR898052
  31. I.M. Sigal, A. Soffer, Local decay and velocity bounds, (1988) 
  32. B. Thaller, The Dirac Equation, (1992), Springer-Verlag Zbl0765.47023MR1219537
  33. M. Reed, B. Simon, Methods of modern mathematical physics. II, (1975), Academic Press Zbl0401.47001MR751959
  34. M. Reed, B. Simon, Methods of modern mathematical physics. III, (1979), Academic Press Zbl0405.47007MR529429
  35. M. Reed, B. Simon, Methods of modern mathematical physics. IV, (1978), Academic Press Zbl0401.47001MR751959

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.