Separabilities of a gaussian Radon measure

Hiroshi Sato; Yoshiaki Okazaki

Annales de l'I.H.P. Probabilités et statistiques (1975)

  • Volume: 11, Issue: 3, page 287-298
  • ISSN: 0246-0203

How to cite

top

Sato, Hiroshi, and Okazaki, Yoshiaki. "Separabilities of a gaussian Radon measure." Annales de l'I.H.P. Probabilités et statistiques 11.3 (1975): 287-298. <http://eudml.org/doc/77025>.

@article{Sato1975,
author = {Sato, Hiroshi, Okazaki, Yoshiaki},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {287-298},
publisher = {Gauthier-Villars},
title = {Separabilities of a gaussian Radon measure},
url = {http://eudml.org/doc/77025},
volume = {11},
year = {1975},
}

TY - JOUR
AU - Sato, Hiroshi
AU - Okazaki, Yoshiaki
TI - Separabilities of a gaussian Radon measure
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1975
PB - Gauthier-Villars
VL - 11
IS - 3
SP - 287
EP - 298
LA - eng
UR - http://eudml.org/doc/77025
ER -

References

top
  1. [1] A. Badrikian and S. Chevet, Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes. Lecture notes in mathematics, Vol. 379, Springer-Verlag, Berlin, 1974. Zbl0288.60009MR420760
  2. [2] R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. of Func. Anal., Vol. 1, 1967, p. 290-330. Zbl0188.20502MR220340
  3. [3] R.M. Dudley, J. Feldman and L. Lecam, On semi-norms and probabilities, and abstract Wiener measures. Ann. of Math., Vol. 93, 1971, p. 390-408. Zbl0193.44603MR279272
  4. [4] J. Kuelbs, Some results for probability measures on linear topological vector spaces with an application to Strassen's loglog law. J. of Func. Anal., Vol. 14, 1973, p. 28-43. Zbl0292.60007MR356157
  5. [5] J. Neveu, Martingales à temps discret. Masson et Cie, Paris, 1972. MR402914
  6. [6] Ju.A. Rozanov, Infinite-dimensional Gaussian distributions. Proc. Steklov Inst. Math., Vol. 108, 1968, A. M. S. (English translation). Zbl0245.60036MR298752
  7. [7] H. Sato, Gaussian measures on a Banach space and abstract Wiener measure. Nagoya Math. J., Vol. 36, 1969, p. 65-81. Zbl0185.44303MR249565
  8. [8] H.H. Schaefer, Topological vector spaces. MacMillan, New York, 1966. Zbl0141.30503MR193469
  9. [9] L. Schwartz, Radon measures on arbitrary topological vector spaces (to appear). 
  10. [10] N.N. Vakhania, On some questions of the theory of probability measures on Banach spaces. Lecture note of Nagoya University, 1973. Zbl0275.60011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.