Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 3, page 339-358
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEvans, Steven N.. "Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types." Annales de l'I.H.P. Probabilités et statistiques 33.3 (1997): 339-358. <http://eudml.org/doc/77572>.
@article{Evans1997,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {right process; duality; infinitely many types; coalescing; vector measure; partition; Fisher-Wright; Fleming-Viot; voter model},
language = {eng},
number = {3},
pages = {339-358},
publisher = {Gauthier-Villars},
title = {Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types},
url = {http://eudml.org/doc/77572},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Evans, Steven N.
TI - Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 3
SP - 339
EP - 358
LA - eng
KW - right process; duality; infinitely many types; coalescing; vector measure; partition; Fisher-Wright; Fleming-Viot; voter model
UR - http://eudml.org/doc/77572
ER -
References
top- [1] C. Berg, J.P.R. Christensen and P. Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer, New York, 1984. Zbl0619.43001MR747302
- [2] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory. Academic Press, New York, 1968. Zbl0169.49204MR264757
- [3] D.A. Dawson, A. Greven and J. Vaillancourt, Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc., Vol. 347, 1995, pp. 2277-2360. Zbl0831.60102MR1297523
- [4] J. Diestel and J.J. Uhl Jr., Vector Measures. American Mathematical Society, Providence, 1977. Zbl0369.46039MR453964
- [5] N. Dunford and J.T. Schwartz. Linear Operators, Part I: General Theory. Interscience Publishers, 1958. Zbl0084.10402MR1009162
- [6] S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Zbl0592.60049MR838085
- [7] S.N. Evans and K. Fleischmann, Cluster formation in formation in a stepping stone model with continuous, hierarchically structured sites. Ann. Probab., Vol. 24, 1996, pp. 1926-1952. Zbl0871.60090MR1415234
- [8] P.J. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes. Israel J. Math., Vol. 64, 1988, pp. 337-361. Zbl0673.60089MR995575
- [9] K. Handa, A measure-valued diffusion process describing the stepping stone model with infinitely many alleles. Stoch. Proc. Appl., Vol. 36, 1990, pp. 269-296 . Zbl0728.92013MR1084980
- [10] T.M. Liggett, Interacting Particle Systems. Springer, New York, 1985. Zbl0559.60078MR776231
- [11] M. Sharpe, General Theory of Markov Processes. Academic Press, Boston, 1988. Zbl0649.60079MR958914
- [12] T. Shiga, An interacting system in population genetics. J. Math. Kyoto Univ., Vol. 20, 1980, pp. 213-242. Zbl0456.92014MR582165
- [13] T. Shiga, Stepping stone models in population genetics and population dynamics. In S. Albeverio et al., ed, Stochastic Processes in Physics and Engineering, Mathematics and Its Applications, pp. 345-355. D. Reidel Publishing Company, 1988. Zbl0656.92006MR948717
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.