Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types

Steven N. Evans

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 3, page 339-358
  • ISSN: 0246-0203

How to cite

top

Evans, Steven N.. "Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types." Annales de l'I.H.P. Probabilités et statistiques 33.3 (1997): 339-358. <http://eudml.org/doc/77572>.

@article{Evans1997,
author = {Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {right process; duality; infinitely many types; coalescing; vector measure; partition; Fisher-Wright; Fleming-Viot; voter model},
language = {eng},
number = {3},
pages = {339-358},
publisher = {Gauthier-Villars},
title = {Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types},
url = {http://eudml.org/doc/77572},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Evans, Steven N.
TI - Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 3
SP - 339
EP - 358
LA - eng
KW - right process; duality; infinitely many types; coalescing; vector measure; partition; Fisher-Wright; Fleming-Viot; voter model
UR - http://eudml.org/doc/77572
ER -

References

top
  1. [1] C. Berg, J.P.R. Christensen and P. Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer, New York, 1984. Zbl0619.43001MR747302
  2. [2] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory. Academic Press, New York, 1968. Zbl0169.49204MR264757
  3. [3] D.A. Dawson, A. Greven and J. Vaillancourt, Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc., Vol. 347, 1995, pp. 2277-2360. Zbl0831.60102MR1297523
  4. [4] J. Diestel and J.J. Uhl Jr., Vector Measures. American Mathematical Society, Providence, 1977. Zbl0369.46039MR453964
  5. [5] N. Dunford and J.T. Schwartz. Linear Operators, Part I: General Theory. Interscience Publishers, 1958. Zbl0084.10402MR1009162
  6. [6] S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Zbl0592.60049MR838085
  7. [7] S.N. Evans and K. Fleischmann, Cluster formation in formation in a stepping stone model with continuous, hierarchically structured sites. Ann. Probab., Vol. 24, 1996, pp. 1926-1952. Zbl0871.60090MR1415234
  8. [8] P.J. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes. Israel J. Math., Vol. 64, 1988, pp. 337-361. Zbl0673.60089MR995575
  9. [9] K. Handa, A measure-valued diffusion process describing the stepping stone model with infinitely many alleles. Stoch. Proc. Appl., Vol. 36, 1990, pp. 269-296 . Zbl0728.92013MR1084980
  10. [10] T.M. Liggett, Interacting Particle Systems. Springer, New York, 1985. Zbl0559.60078MR776231
  11. [11] M. Sharpe, General Theory of Markov Processes. Academic Press, Boston, 1988. Zbl0649.60079MR958914
  12. [12] T. Shiga, An interacting system in population genetics. J. Math. Kyoto Univ., Vol. 20, 1980, pp. 213-242. Zbl0456.92014MR582165
  13. [13] T. Shiga, Stepping stone models in population genetics and population dynamics. In S. Albeverio et al., ed, Stochastic Processes in Physics and Engineering, Mathematics and Its Applications, pp. 345-355. D. Reidel Publishing Company, 1988. Zbl0656.92006MR948717

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.