The quasi-sure ratio ergodic theorem
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 3, page 385-405
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFitzsimmons, P. J.. "The quasi-sure ratio ergodic theorem." Annales de l'I.H.P. Probabilités et statistiques 34.3 (1998): 385-405. <http://eudml.org/doc/77607>.
@article{Fitzsimmons1998,
author = {Fitzsimmons, P. J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic theorem; right processes; filling scheme},
language = {eng},
number = {3},
pages = {385-405},
publisher = {Gauthier-Villars},
title = {The quasi-sure ratio ergodic theorem},
url = {http://eudml.org/doc/77607},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Fitzsimmons, P. J.
TI - The quasi-sure ratio ergodic theorem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 3
SP - 385
EP - 405
LA - eng
KW - ergodic theorem; right processes; filling scheme
UR - http://eudml.org/doc/77607
ER -
References
top- [1] H. Airault and H. Föllmer, Relative densities of semimartingales, Invent. Math., Vol. 27, 1974, pp. 299-327. Zbl0281.60053MR365724
- [2] M.A. Akcoglu, An ergodic lemma, Proc. Amer. Math. Soc., Vol. 16, 1965, pp. 388-392. Zbl0134.12103MR179325
- [3] M.A. Akcoglu and J. Cunsolo, An ergodic theorem for semigroups, Proc. Amer. Math. Soc., Vol. 24, 1970, pp. 161-170. Zbl0187.06803MR248326
- [4] J. Azéma, M. Duflo and D. Revuz, Théorèmes limites pour les processus de Markov récurrents, C. R. Acad. Sci. Paris, Sér. A-B, Vol. 265, 1967, pp. A856-A858. Zbl0182.51202MR230369
- [5] J. Azéma, M. Kaplan-Duflo and D. Revuz, Mesure invariante sur les classes récurrentes des processus de Markov, Z. Wahrsch. verw. Geb., Vol. 8, 1967, pp. 157-181. Zbl0178.20302MR222955
- [6] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- [7] R.M. Blumenthal, A decomposition of excessive measures, In Seminar on Stochastic Processes, 1985, Birkhäuser, Boston, 1986, pp. 1-8. Zbl0602.60061MR896732
- [8] A. Brunel, Sur un lemme ergodique voisin du lemme de E. Hopf, et sur une de ses applications, C. R. Acad. Sci. Paris, Vol. 256, 1963, pp. 5481-5484. Zbl0117.10402MR152633
- [9] R.V. Chacon and D.S. Ornstein, A general ergodic theorem, Ill. J. Math., Vol. 4, 1960, pp. 153-160. Zbl0134.12102MR110954
- [10] R.V. Chacon, Identification of the limit of operator averages, J. Math. Mech., Vol. 11, 1962, pp. 961-968. Zbl0139.34701MR145352
- [11] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel, A, Ch. XII à XVI, Hermann, Paris, 1987. MR488194
- [12] Ju.V. Direev, An ergodic theorem for additive functionals, Theor. Prob. Appl., Vol. 25, 1980, pp. 614-617. Zbl0462.60075MR582595
- [13] E.B. Dynkin, Optimal choice of the stopping moment of a Markov process, (Russian) Dokl. Akad. Nauk SSSR, Vol. 150, 1963, pp. 238-240. Translated in Sov. Math., Vol. 4, 1963, pp. 627-629. Zbl0242.60018MR154329
- [14] D.A. Edwards, On potentials and general ergodic theorems for resolvents, Z. Wahrsch. verw. Geb., Vol. 20, 1971, pp. 1-8. Zbl0214.07202MR306446
- [15] N. ElKAROUI, Les aspects probabilistes du contrôle stochastique, In: Ecole d'été de probabilités de St. FlourIX. Lecture Notes in Math., Vol. 876, Springer-Verlag, Berlin, 1981, pp. 74-239. Zbl0472.60002MR637471
- [16] D. Feyel, Théorèmes de convergence presque-sûre. Existence de semi-groupes, Adv. Math., Vol. 43, 1979, pp. 145-162. Zbl0425.60005MR549782
- [17] P.J. Fitzsimmons, Markov processes and nonsymmetric Dirichlet forms without regularity, J. Funct. Anal., Vol. 85, 1989, pp. 287-306. Zbl0686.60077MR1012207
- [18] P.J. Fitzsimmons and R.K. Getoor, Smooth measures and continuous additive functionals of right Markov processes, In Itô's Stochastic Calculus and Probability Theory, N. Ikeda, S. Watanabe, M. Fukushima, H. Kunita (Eds.), Springer, Tokyo, 1996, pp. 31-49. Zbl0866.60063MR1439516
- [19] P.J. Fitzsimmons and B. Maisonneuve, Excessive measures and Markov processes with random birth and death, Probab. Th. Rel. Fields, Vol. 72, 1986, pp. 319-336. Zbl0584.60085MR843498
- [20] M. Fukushima, Almost polar sets and an ergodic theorem, J. Math. Soc. Japan, Vol. 26, 1974, pp. 17-32. Zbl0266.60057MR350871
- [21] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Markov Processes, De Gruyter, Berlin-New York, 1994. Zbl0838.31001MR1303354
- [22] R.K. Getoor and M.J. Sharpe, Naturality, standardness, and weak duality for Markov processes, Z. Wahrsch. verw. Geb., Vol. 67, 1984, pp. 1-62. Zbl0553.60070MR756804
- [23] R.K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Math., Vol. 440, Springer-Verlag, Berlin-New York, 1975. Zbl0299.60051MR405598
- [24] R.K. Getoor, Excessive Measures, Birkhäuser, Boston, 1990. Zbl0982.31500MR1093669
- [25] B. Maisonneuve, Exit systems, Ann. Prob., Vol. 3, 1975, pp. 399-411. Zbl0311.60047MR400417
- [26] M. Métivier, Théorèmes limite quotient pour chaînes de Markov récurrentes au sens de Harris, Ann. Inst. H. Poincaré, Sect. B, Vol. 8, 1972, pp. 93-105. Zbl0271.60069MR305483
- [27] P.-A. Meyer, Théorie ergodique et potentiels. Identification de la limite, Ann. Inst. Fourier (Grenoble), Vol. 15, 1965, pp. 97-102. Zbl0134.32403MR200414
- [28] P.-A. Meyer, Le schema de remplissage en temps continu, d'aprés H. ROST, In Séminaire de Probabilités, VI, Lecture Notes in Math., Vol. 258, Springer, Berlin, 1972, pp. 130-150. Zbl0231.60062MR402946
- [29] G. Mokobodzki, Densité relative de deux potentiels comparable, In Séminaire de ProbabilitéIV, Lecture Notes in Math., Vol. 124, Springer, Berlin-Heidelberg- New York, 1970, pp. 170-195. Zbl0218.31014MR294679
- [30] G. Mokobodzki, Maximal inequalities and potential theory, In Potential Theory (Proc. Int. Conf. Pot. Theory, Nagoya (Japan), August 30-September 4, 1990), Springer, 1992, pp. 65-73. Zbl0788.31007MR1167223
- [31] M. Motoo, Representations of a certain class of excessive functions and a generator of Markov processes, Sci. PapersColl. Gen. Educ., Univ. Tokyo, Vol. 12, 1962, pp. 143-159. Zbl0109.11701MR149558
- [32] J. Neveu, Potentiel Markovien recurrent des chaînes deHarris, Ann. Inst. Fourier (Grenoble), Vol. 22, 1972, pp. 85-130. Zbl0226.60084MR380992
- [33] J. Neveu, Une généralisation d'un théorème limite-quotient, Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Academia, Prague, 1973, pp. 675-682. Zbl0284.60063MR350859
- [34] J. Neveu, The filling scheme and the CHACON-ORNSTEIN theorem, Israel J. Math., Vol. 33, 1979, pp. 368-377. Zbl0428.28011MR571539
- [35] S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand-Reinhold, London, 1971. Zbl0295.60054MR324774
- [36] S.C. Port and C.J. Stone, Infinitely divisible processes and their potential theory, I, Ann. Inst. Fourier (Grenoble), Vol. 21, 1971, pp. 157-275. Zbl0195.47601MR346919
- [37] H. Rost, Stopping distributions of a Markov process, Invent. Math., Vol. 14, 1971, pp. 1-16. Zbl0225.60025MR346920
- [38] M.J. Sharpe, General Theory of Markov Processes, Academic Press, San Diego, 1988. Zbl0649.60079MR958914
- [39] M.G. Shur, An ergodic theorem for Markov processes, I, Theor. Prob. Appl., Vol. 21, 1976, pp. 400-406. Zbl0367.60086
- [40] M.G. Shur, An ergodic theorem for Markov processes, II, Theor. Prob. Appl., Vol. 22, 1977, pp. 692-707. Zbl0395.60065
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.