The quasi-sure ratio ergodic theorem

P. J. Fitzsimmons

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 3, page 385-405
  • ISSN: 0246-0203

How to cite

top

Fitzsimmons, P. J.. "The quasi-sure ratio ergodic theorem." Annales de l'I.H.P. Probabilités et statistiques 34.3 (1998): 385-405. <http://eudml.org/doc/77607>.

@article{Fitzsimmons1998,
author = {Fitzsimmons, P. J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic theorem; right processes; filling scheme},
language = {eng},
number = {3},
pages = {385-405},
publisher = {Gauthier-Villars},
title = {The quasi-sure ratio ergodic theorem},
url = {http://eudml.org/doc/77607},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Fitzsimmons, P. J.
TI - The quasi-sure ratio ergodic theorem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 3
SP - 385
EP - 405
LA - eng
KW - ergodic theorem; right processes; filling scheme
UR - http://eudml.org/doc/77607
ER -

References

top
  1. [1] H. Airault and H. Föllmer, Relative densities of semimartingales, Invent. Math., Vol. 27, 1974, pp. 299-327. Zbl0281.60053MR365724
  2. [2] M.A. Akcoglu, An ergodic lemma, Proc. Amer. Math. Soc., Vol. 16, 1965, pp. 388-392. Zbl0134.12103MR179325
  3. [3] M.A. Akcoglu and J. Cunsolo, An ergodic theorem for semigroups, Proc. Amer. Math. Soc., Vol. 24, 1970, pp. 161-170. Zbl0187.06803MR248326
  4. [4] J. Azéma, M. Duflo and D. Revuz, Théorèmes limites pour les processus de Markov récurrents, C. R. Acad. Sci. Paris, Sér. A-B, Vol. 265, 1967, pp. A856-A858. Zbl0182.51202MR230369
  5. [5] J. Azéma, M. Kaplan-Duflo and D. Revuz, Mesure invariante sur les classes récurrentes des processus de Markov, Z. Wahrsch. verw. Geb., Vol. 8, 1967, pp. 157-181. Zbl0178.20302MR222955
  6. [6] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  7. [7] R.M. Blumenthal, A decomposition of excessive measures, In Seminar on Stochastic Processes, 1985, Birkhäuser, Boston, 1986, pp. 1-8. Zbl0602.60061MR896732
  8. [8] A. Brunel, Sur un lemme ergodique voisin du lemme de E. Hopf, et sur une de ses applications, C. R. Acad. Sci. Paris, Vol. 256, 1963, pp. 5481-5484. Zbl0117.10402MR152633
  9. [9] R.V. Chacon and D.S. Ornstein, A general ergodic theorem, Ill. J. Math., Vol. 4, 1960, pp. 153-160. Zbl0134.12102MR110954
  10. [10] R.V. Chacon, Identification of the limit of operator averages, J. Math. Mech., Vol. 11, 1962, pp. 961-968. Zbl0139.34701MR145352
  11. [11] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel, A, Ch. XII à XVI, Hermann, Paris, 1987. MR488194
  12. [12] Ju.V. Direev, An ergodic theorem for additive functionals, Theor. Prob. Appl., Vol. 25, 1980, pp. 614-617. Zbl0462.60075MR582595
  13. [13] E.B. Dynkin, Optimal choice of the stopping moment of a Markov process, (Russian) Dokl. Akad. Nauk SSSR, Vol. 150, 1963, pp. 238-240. Translated in Sov. Math., Vol. 4, 1963, pp. 627-629. Zbl0242.60018MR154329
  14. [14] D.A. Edwards, On potentials and general ergodic theorems for resolvents, Z. Wahrsch. verw. Geb., Vol. 20, 1971, pp. 1-8. Zbl0214.07202MR306446
  15. [15] N. ElKAROUI, Les aspects probabilistes du contrôle stochastique, In: Ecole d'été de probabilités de St. FlourIX. Lecture Notes in Math., Vol. 876, Springer-Verlag, Berlin, 1981, pp. 74-239. Zbl0472.60002MR637471
  16. [16] D. Feyel, Théorèmes de convergence presque-sûre. Existence de semi-groupes, Adv. Math., Vol. 43, 1979, pp. 145-162. Zbl0425.60005MR549782
  17. [17] P.J. Fitzsimmons, Markov processes and nonsymmetric Dirichlet forms without regularity, J. Funct. Anal., Vol. 85, 1989, pp. 287-306. Zbl0686.60077MR1012207
  18. [18] P.J. Fitzsimmons and R.K. Getoor, Smooth measures and continuous additive functionals of right Markov processes, In Itô's Stochastic Calculus and Probability Theory, N. Ikeda, S. Watanabe, M. Fukushima, H. Kunita (Eds.), Springer, Tokyo, 1996, pp. 31-49. Zbl0866.60063MR1439516
  19. [19] P.J. Fitzsimmons and B. Maisonneuve, Excessive measures and Markov processes with random birth and death, Probab. Th. Rel. Fields, Vol. 72, 1986, pp. 319-336. Zbl0584.60085MR843498
  20. [20] M. Fukushima, Almost polar sets and an ergodic theorem, J. Math. Soc. Japan, Vol. 26, 1974, pp. 17-32. Zbl0266.60057MR350871
  21. [21] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Markov Processes, De Gruyter, Berlin-New York, 1994. Zbl0838.31001MR1303354
  22. [22] R.K. Getoor and M.J. Sharpe, Naturality, standardness, and weak duality for Markov processes, Z. Wahrsch. verw. Geb., Vol. 67, 1984, pp. 1-62. Zbl0553.60070MR756804
  23. [23] R.K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Math., Vol. 440, Springer-Verlag, Berlin-New York, 1975. Zbl0299.60051MR405598
  24. [24] R.K. Getoor, Excessive Measures, Birkhäuser, Boston, 1990. Zbl0982.31500MR1093669
  25. [25] B. Maisonneuve, Exit systems, Ann. Prob., Vol. 3, 1975, pp. 399-411. Zbl0311.60047MR400417
  26. [26] M. Métivier, Théorèmes limite quotient pour chaînes de Markov récurrentes au sens de Harris, Ann. Inst. H. Poincaré, Sect. B, Vol. 8, 1972, pp. 93-105. Zbl0271.60069MR305483
  27. [27] P.-A. Meyer, Théorie ergodique et potentiels. Identification de la limite, Ann. Inst. Fourier (Grenoble), Vol. 15, 1965, pp. 97-102. Zbl0134.32403MR200414
  28. [28] P.-A. Meyer, Le schema de remplissage en temps continu, d'aprés H. ROST, In Séminaire de Probabilités, VI, Lecture Notes in Math., Vol. 258, Springer, Berlin, 1972, pp. 130-150. Zbl0231.60062MR402946
  29. [29] G. Mokobodzki, Densité relative de deux potentiels comparable, In Séminaire de ProbabilitéIV, Lecture Notes in Math., Vol. 124, Springer, Berlin-Heidelberg- New York, 1970, pp. 170-195. Zbl0218.31014MR294679
  30. [30] G. Mokobodzki, Maximal inequalities and potential theory, In Potential Theory (Proc. Int. Conf. Pot. Theory, Nagoya (Japan), August 30-September 4, 1990), Springer, 1992, pp. 65-73. Zbl0788.31007MR1167223
  31. [31] M. Motoo, Representations of a certain class of excessive functions and a generator of Markov processes, Sci. PapersColl. Gen. Educ., Univ. Tokyo, Vol. 12, 1962, pp. 143-159. Zbl0109.11701MR149558
  32. [32] J. Neveu, Potentiel Markovien recurrent des chaînes deHarris, Ann. Inst. Fourier (Grenoble), Vol. 22, 1972, pp. 85-130. Zbl0226.60084MR380992
  33. [33] J. Neveu, Une généralisation d'un théorème limite-quotient, Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Academia, Prague, 1973, pp. 675-682. Zbl0284.60063MR350859
  34. [34] J. Neveu, The filling scheme and the CHACON-ORNSTEIN theorem, Israel J. Math., Vol. 33, 1979, pp. 368-377. Zbl0428.28011MR571539
  35. [35] S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand-Reinhold, London, 1971. Zbl0295.60054MR324774
  36. [36] S.C. Port and C.J. Stone, Infinitely divisible processes and their potential theory, I, Ann. Inst. Fourier (Grenoble), Vol. 21, 1971, pp. 157-275. Zbl0195.47601MR346919
  37. [37] H. Rost, Stopping distributions of a Markov process, Invent. Math., Vol. 14, 1971, pp. 1-16. Zbl0225.60025MR346920
  38. [38] M.J. Sharpe, General Theory of Markov Processes, Academic Press, San Diego, 1988. Zbl0649.60079MR958914
  39. [39] M.G. Shur, An ergodic theorem for Markov processes, I, Theor. Prob. Appl., Vol. 21, 1976, pp. 400-406. Zbl0367.60086
  40. [40] M.G. Shur, An ergodic theorem for Markov processes, II, Theor. Prob. Appl., Vol. 22, 1977, pp. 692-707. Zbl0395.60065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.