On the explosion of the local times along lines of brownian sheet

Davar Khoshnevisan; Pál Révész; Zhan Shi

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 1-24
  • ISSN: 0246-0203

How to cite

top

Khoshnevisan, Davar, Révész, Pál, and Shi, Zhan. "On the explosion of the local times along lines of brownian sheet." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 1-24. <http://eudml.org/doc/77795>.

@article{Khoshnevisan2004,
author = {Khoshnevisan, Davar, Révész, Pál, Shi, Zhan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian sheet; local times along lines; maximal inequality; uniform ratio ergodic theorem; capacity estimate in Wiener space},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Elsevier},
title = {On the explosion of the local times along lines of brownian sheet},
url = {http://eudml.org/doc/77795},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Khoshnevisan, Davar
AU - Révész, Pál
AU - Shi, Zhan
TI - On the explosion of the local times along lines of brownian sheet
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 1
EP - 24
LA - eng
KW - Brownian sheet; local times along lines; maximal inequality; uniform ratio ergodic theorem; capacity estimate in Wiener space
UR - http://eudml.org/doc/77795
ER -

References

top
  1. [1] E. Csáki, M. Csörgő, A. Földes, P. Révész, Brownian local time approximated by a Wiener sheet, Ann. Probab.17 (2) (1989) 516-537. Zbl0674.60072MR985376
  2. [2] E. Csáki, A. Földes, How small are the increments of the local time of a Wiener process?, Ann. Probab.14 (2) (1986) 533-546. Zbl0598.60083MR832022
  3. [3] E. Csáki, A. Földes, A note on the stability of the local time of a Wiener process, Stochastic Process. Appl.25 (2) (1987) 203-213. Zbl0631.60072MR915134
  4. [4] E. Csáki, D. Khoshnevisan, Z. Shi, Capacity estimates, boundary crossings and the Ornstein–Uhlenbeck process in Wiener space, Electronic Communications in Probability4 (1999) 103-109, http://www.math.washington.edu/~ejpecp/EcpVol4/paper13.abs.html. Zbl0936.60048
  5. [5] P.J. Fitzsimmons, The quasi-sure ratio ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist.34 (3) (1998) 385-405. Zbl0909.60055MR1625863
  6. [6] P. Hall, C.C. Heyde, Martingale Limit Theory and its Applications, Probability Theory and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
  7. [7] K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin, 1974. Zbl0285.60063MR345224
  8. [8] T. Kamae, A simple proof of the ergodic theorem using nonstandard analysis, Israel J. Math.42 (4) (1982) 284-290. Zbl0499.28011MR682311
  9. [9] Y. Katznelson, B. Weiss, A simple proof of some ergodic theorems, Israel J. Math.42 (4) (1982) 291-296. Zbl0546.28013MR682312
  10. [10] D. Khoshnevisan, The distribution of bubbles of Brownian sheet, Ann. Probab.23 (2) (1995) 786-805. Zbl0833.60044MR1334172
  11. [11] D. Khoshnevisan, Rate of convergence in the ratio ergodic theorem for Markov processes, 1995, Unpublished. 
  12. [12] D. Khoshnevisan, Lévy classes and self-normalization, Electron. J. Probab.1 (1) (1996) 1-18, http://www.math.washington.edu/~ejpecp/EjpVol1/paper1.abs.html. Zbl0891.60036MR1386293
  13. [13] J. Kuelbs, R. Le Page, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc.185 (1973) 253-265. Zbl0278.60052MR370725
  14. [14] M.T. Lacey, Limit laws for local times of the Brownian sheet, Probab. Theory Related Fields86 (1) (1990) 63-85. Zbl0681.60076MR1061949
  15. [15] H.P. McKean, A Hölder condition for Brownian local time, J. Math. Kyoto Univ.1 (1961/1962) 195-201. Zbl0121.13101MR146902
  16. [16] M. Motoo, Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math.10 (1958) 21-28. Zbl0084.35801MR97866
  17. [17] M.D. Penrose, Quasi-everywhere properties of Brownian level sets and multiple points, Stochastic Process. Appl.36 (1) (1990) 33-43. Zbl0707.60069MR1075599
  18. [18] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999. Zbl0731.60002MR1725357
  19. [19] J.B. Walsh, The local time of the Brownian sheet, Astérisque52–53 (1978) 47-61. 
  20. [20] J.B. Walsh, Propagation of singularities in the Brownian sheet, Ann. Probab.10 (2) (1982) 279-288. Zbl0528.60076MR647504
  21. [21] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de probabilités de Saint-Flour, XIV–1984, Springer, Berlin, 1986, pp. 265-439. Zbl0608.60060
  22. [22] M. Yor, Le drap brownien comme limite en loi de temps locaux linéaires, in: Séminaire de Probabilités, XVII, Springer, Berlin, 1983, pp. 89-105. Zbl0514.60075MR770400
  23. [23] G.J. Zimmerman, Some sample function properties of the two-parameter Gaussian process, Ann. Math. Statist.43 (1972) 1235-1246. Zbl0244.60032MR317401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.