On the explosion of the local times along lines of brownian sheet
Davar Khoshnevisan; Pál Révész; Zhan Shi
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 1, page 1-24
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKhoshnevisan, Davar, Révész, Pál, and Shi, Zhan. "On the explosion of the local times along lines of brownian sheet." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 1-24. <http://eudml.org/doc/77795>.
@article{Khoshnevisan2004,
author = {Khoshnevisan, Davar, Révész, Pál, Shi, Zhan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian sheet; local times along lines; maximal inequality; uniform ratio ergodic theorem; capacity estimate in Wiener space},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Elsevier},
title = {On the explosion of the local times along lines of brownian sheet},
url = {http://eudml.org/doc/77795},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Khoshnevisan, Davar
AU - Révész, Pál
AU - Shi, Zhan
TI - On the explosion of the local times along lines of brownian sheet
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 1
EP - 24
LA - eng
KW - Brownian sheet; local times along lines; maximal inequality; uniform ratio ergodic theorem; capacity estimate in Wiener space
UR - http://eudml.org/doc/77795
ER -
References
top- [1] E. Csáki, M. Csörgő, A. Földes, P. Révész, Brownian local time approximated by a Wiener sheet, Ann. Probab.17 (2) (1989) 516-537. Zbl0674.60072MR985376
- [2] E. Csáki, A. Földes, How small are the increments of the local time of a Wiener process?, Ann. Probab.14 (2) (1986) 533-546. Zbl0598.60083MR832022
- [3] E. Csáki, A. Földes, A note on the stability of the local time of a Wiener process, Stochastic Process. Appl.25 (2) (1987) 203-213. Zbl0631.60072MR915134
- [4] E. Csáki, D. Khoshnevisan, Z. Shi, Capacity estimates, boundary crossings and the Ornstein–Uhlenbeck process in Wiener space, Electronic Communications in Probability4 (1999) 103-109, http://www.math.washington.edu/~ejpecp/EcpVol4/paper13.abs.html. Zbl0936.60048
- [5] P.J. Fitzsimmons, The quasi-sure ratio ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist.34 (3) (1998) 385-405. Zbl0909.60055MR1625863
- [6] P. Hall, C.C. Heyde, Martingale Limit Theory and its Applications, Probability Theory and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
- [7] K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin, 1974. Zbl0285.60063MR345224
- [8] T. Kamae, A simple proof of the ergodic theorem using nonstandard analysis, Israel J. Math.42 (4) (1982) 284-290. Zbl0499.28011MR682311
- [9] Y. Katznelson, B. Weiss, A simple proof of some ergodic theorems, Israel J. Math.42 (4) (1982) 291-296. Zbl0546.28013MR682312
- [10] D. Khoshnevisan, The distribution of bubbles of Brownian sheet, Ann. Probab.23 (2) (1995) 786-805. Zbl0833.60044MR1334172
- [11] D. Khoshnevisan, Rate of convergence in the ratio ergodic theorem for Markov processes, 1995, Unpublished.
- [12] D. Khoshnevisan, Lévy classes and self-normalization, Electron. J. Probab.1 (1) (1996) 1-18, http://www.math.washington.edu/~ejpecp/EjpVol1/paper1.abs.html. Zbl0891.60036MR1386293
- [13] J. Kuelbs, R. Le Page, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc.185 (1973) 253-265. Zbl0278.60052MR370725
- [14] M.T. Lacey, Limit laws for local times of the Brownian sheet, Probab. Theory Related Fields86 (1) (1990) 63-85. Zbl0681.60076MR1061949
- [15] H.P. McKean, A Hölder condition for Brownian local time, J. Math. Kyoto Univ.1 (1961/1962) 195-201. Zbl0121.13101MR146902
- [16] M. Motoo, Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math.10 (1958) 21-28. Zbl0084.35801MR97866
- [17] M.D. Penrose, Quasi-everywhere properties of Brownian level sets and multiple points, Stochastic Process. Appl.36 (1) (1990) 33-43. Zbl0707.60069MR1075599
- [18] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999. Zbl0731.60002MR1725357
- [19] J.B. Walsh, The local time of the Brownian sheet, Astérisque52–53 (1978) 47-61.
- [20] J.B. Walsh, Propagation of singularities in the Brownian sheet, Ann. Probab.10 (2) (1982) 279-288. Zbl0528.60076MR647504
- [21] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de probabilités de Saint-Flour, XIV–1984, Springer, Berlin, 1986, pp. 265-439. Zbl0608.60060
- [22] M. Yor, Le drap brownien comme limite en loi de temps locaux linéaires, in: Séminaire de Probabilités, XVII, Springer, Berlin, 1983, pp. 89-105. Zbl0514.60075MR770400
- [23] G.J. Zimmerman, Some sample function properties of the two-parameter Gaussian process, Ann. Math. Statist.43 (1972) 1235-1246. Zbl0244.60032MR317401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.