On the explosion of the local times along lines of brownian sheet
Davar Khoshnevisan; Pál Révész; Zhan Shi
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 1, page 1-24
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] E. Csáki, M. Csörgő, A. Földes, P. Révész, Brownian local time approximated by a Wiener sheet, Ann. Probab.17 (2) (1989) 516-537. Zbl0674.60072MR985376
- [2] E. Csáki, A. Földes, How small are the increments of the local time of a Wiener process?, Ann. Probab.14 (2) (1986) 533-546. Zbl0598.60083MR832022
- [3] E. Csáki, A. Földes, A note on the stability of the local time of a Wiener process, Stochastic Process. Appl.25 (2) (1987) 203-213. Zbl0631.60072MR915134
- [4] E. Csáki, D. Khoshnevisan, Z. Shi, Capacity estimates, boundary crossings and the Ornstein–Uhlenbeck process in Wiener space, Electronic Communications in Probability4 (1999) 103-109, http://www.math.washington.edu/~ejpecp/EcpVol4/paper13.abs.html. Zbl0936.60048
- [5] P.J. Fitzsimmons, The quasi-sure ratio ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist.34 (3) (1998) 385-405. Zbl0909.60055MR1625863
- [6] P. Hall, C.C. Heyde, Martingale Limit Theory and its Applications, Probability Theory and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
- [7] K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin, 1974. Zbl0285.60063MR345224
- [8] T. Kamae, A simple proof of the ergodic theorem using nonstandard analysis, Israel J. Math.42 (4) (1982) 284-290. Zbl0499.28011MR682311
- [9] Y. Katznelson, B. Weiss, A simple proof of some ergodic theorems, Israel J. Math.42 (4) (1982) 291-296. Zbl0546.28013MR682312
- [10] D. Khoshnevisan, The distribution of bubbles of Brownian sheet, Ann. Probab.23 (2) (1995) 786-805. Zbl0833.60044MR1334172
- [11] D. Khoshnevisan, Rate of convergence in the ratio ergodic theorem for Markov processes, 1995, Unpublished.
- [12] D. Khoshnevisan, Lévy classes and self-normalization, Electron. J. Probab.1 (1) (1996) 1-18, http://www.math.washington.edu/~ejpecp/EjpVol1/paper1.abs.html. Zbl0891.60036MR1386293
- [13] J. Kuelbs, R. Le Page, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc.185 (1973) 253-265. Zbl0278.60052MR370725
- [14] M.T. Lacey, Limit laws for local times of the Brownian sheet, Probab. Theory Related Fields86 (1) (1990) 63-85. Zbl0681.60076MR1061949
- [15] H.P. McKean, A Hölder condition for Brownian local time, J. Math. Kyoto Univ.1 (1961/1962) 195-201. Zbl0121.13101MR146902
- [16] M. Motoo, Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math.10 (1958) 21-28. Zbl0084.35801MR97866
- [17] M.D. Penrose, Quasi-everywhere properties of Brownian level sets and multiple points, Stochastic Process. Appl.36 (1) (1990) 33-43. Zbl0707.60069MR1075599
- [18] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999. Zbl0731.60002MR1725357
- [19] J.B. Walsh, The local time of the Brownian sheet, Astérisque52–53 (1978) 47-61.
- [20] J.B. Walsh, Propagation of singularities in the Brownian sheet, Ann. Probab.10 (2) (1982) 279-288. Zbl0528.60076MR647504
- [21] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de probabilités de Saint-Flour, XIV–1984, Springer, Berlin, 1986, pp. 265-439. Zbl0608.60060
- [22] M. Yor, Le drap brownien comme limite en loi de temps locaux linéaires, in: Séminaire de Probabilités, XVII, Springer, Berlin, 1983, pp. 89-105. Zbl0514.60075MR770400
- [23] G.J. Zimmerman, Some sample function properties of the two-parameter Gaussian process, Ann. Math. Statist.43 (1972) 1235-1246. Zbl0244.60032MR317401