Convergence of critical oriented percolation to super-brownian motion above dimensions
Remco Van der Hofstad; Gordon Slade
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 3, page 413-485
- ISSN: 0246-0203
Access Full Article
topHow to cite
topVan der Hofstad, Remco, and Slade, Gordon. "Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 413-485. <http://eudml.org/doc/77769>.
@article{VanderHofstad2003,
author = {Van der Hofstad, Remco, Slade, Gordon},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {oriented percolation; super-Brownian motion; lace expansion},
language = {eng},
number = {3},
pages = {413-485},
publisher = {Elsevier},
title = {Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions},
url = {http://eudml.org/doc/77769},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Van der Hofstad, Remco
AU - Slade, Gordon
TI - Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 413
EP - 485
LA - eng
KW - oriented percolation; super-Brownian motion; lace expansion
UR - http://eudml.org/doc/77769
ER -
References
top- [1] R.J. Adler, Superprocess local and intersection local times and their corresponding particle pictures, in: Çinlar E., Chung K.L., Sharpe M.J. (Eds.), Seminar on Stochastic Processes 1992, Birkhäuser, Boston, 1993, pp. 1-42. Zbl0786.60103MR1278075
- [2] M. Aizenman, D.J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys.108 (1987) 489-526. Zbl0618.60098MR874906
- [3] M. Aizenman, C.M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys.36 (1984) 107-143. Zbl0586.60096MR762034
- [4] D. Aldous, Tree-based models for random distribution of mass, J. Stat. Phys.73 (1993) 625-641. Zbl1102.60318MR1251658
- [5] M.T. Barlow, E.A. Perkins, On the filtration of historical Brownian motion, Ann. Probab.22 (1994) 1273-1294. Zbl0816.60044MR1303645
- [6] C. Bezuidenhout, G. Grimmett, The critical contact process dies out, Ann. Probab.18 (1990) 1462-1482. Zbl0718.60109MR1071804
- [7] E. Bolthausen, C. Ritzmann, A central limit theorem for convolution equations and weakly self-avoiding walks, Ann. Probab., to appear. Zbl06571500
- [8] D.C. Brydges, T. Spencer, Self-avoiding walk in 5 or more dimensions, Comm. Math. Phys.97 (1985) 125-148. Zbl0575.60099MR782962
- [9] J.T. Cox, R. Durrett, E.A. Perkins, Rescaled voter models converge to super-Brownian motion, Ann. Probab.28 (2000) 185-234. Zbl1044.60092MR1756003
- [10] T. Cox, R. Durrett, E.A. Perkins, Rescaled particle systems converging to super-Brownian motion, in: Bramson M., Durrett R. (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. Zbl0941.60095MR1703136
- [11] D.A. Dawson, Measure-Valued Markov Processes, in: Ecole d'Eté de Probabilités de Saint-Flour 1991, Lecture Notes in Mathematics, 1541, Springer, Berlin, 1993. Zbl0799.60080MR1242575
- [12] E. Derbez, G. Slade, Lattice trees and super-Brownian motion, Canad. Math. Bull.40 (1997) 19-38. Zbl0874.60091MR1443722
- [13] E. Derbez, G. Slade, The scaling limit of lattice trees in high dimensions, Comm. Math. Phys.193 (1998) 69-104. Zbl0915.60076MR1620301
- [14] R. Durrett, E.A. Perkins, Rescaled contact processes converge to super-Brownian motion in two or more dimensions, Probab. Theory Related Fields114 (1999) 309-399. Zbl0953.60093MR1705115
- [15] E.B. Dynkin, Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times, Astérisque157–158 (1988) 147-171. Zbl0659.60105
- [16] E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, American Mathematical Society, Providence, RI, 1994. Zbl0824.60001MR1280712
- [17] A.M. Etheridge, An Introduction to Superprocesses, American Mathematical Society, Providence, RI, 2000. Zbl0971.60053MR1779100
- [18] G. Grimmett, Percolation, Springer, Berlin, 1999. Zbl0926.60004MR1707339
- [19] G. Grimmett, P. Hiemer, Directed percolation and random walk, in: Sidoravicius V. (Ed.), In and Out of Equilibrium, Birkhäuser, Boston, 2002, pp. 273-297. Zbl1010.60087MR1901958
- [20] T. Hara, G. Slade, Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys.128 (1990) 333-391. Zbl0698.60100MR1043524
- [21] T. Hara, G. Slade, The number and size of branched polymers in high dimensions, J. Stat. Phys.67 (1992) 1009-1038. Zbl0925.82231MR1170084
- [22] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Stat. Phys.99 (2000) 1075-1168. Zbl0968.82016MR1773141
- [23] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion, J. Math. Phys.41 (2000) 1244-1293. Zbl0977.82022MR1757958
- [24] R. van der Hofstad, F. den Hollander, G. Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions, Comm. Math. Phys.231 (2002) 435-461. Zbl1013.82017MR1946445
- [25] R. van der Hofstad, F. den Hollander, G. Slade, A new inductive approach to the lace expansion for self-avoiding walks, Probab. Theory Related Fields111 (1998) 253-286. Zbl0906.60078MR1633582
- [26] R. van der Hofstad, G. Slade, The lace expansion on a tree with application to networks of self-avoiding walks, Adv. Appl. Math., to appear. Zbl1027.60098MR1973954
- [27] R. van der Hofstad, G. Slade, A generalised inductive approach to the lace expansion, Probab. Theory Related Fields122 (2002) 389-430. Zbl1002.60095MR1892852
- [28] J.-F. Le Gall, Spatial Branching Processes, Random Snakes, and Partial Differential Equations, Birkhäuser, Basel, 1999. Zbl0938.60003MR1714707
- [29] N. Madras, G. Slade, The Self-Avoiding Walk, Birkhäuser, Boston, 1993. Zbl0872.60076MR1197356
- [30] M.V. Menshikov, Coincidence of critical points in percolation problems, Soviet Math. Dokl.33 (1986) 856-859. Zbl0615.60096MR852458
- [31] B.G. Nguyen, W.-S. Yang, Triangle condition for oriented percolation in high dimensions, Ann. Probab.21 (1993) 1809-1844. Zbl0806.60097MR1245291
- [32] B.G. Nguyen, W.S. Yang, Gaussian limit for critical oriented percolation in high dimensions, J. Stat. Phys.78 (1995) 841-876. Zbl1114.82304MR1315235
- [33] S.P. Obukhov, The problem of directed percolation, Phys.101A (1980) 145-155. MR572004
- [34] E. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Bernard P.L. (Ed.), Lectures on Probability Theory and Statistics. Ecole d'Eté de Probabilités de Saint-Flour XXIX-1999, Lecture Notes in Mathematics, 1781, Springer, Berlin, 2002, pp. 125-329. Zbl1020.60075
- [35] A. Sakai, Mean-field critical behavior for the contact process, J. Stat. Phys.104 (2001) 111-143. Zbl1019.82012MR1851386
- [36] A. Sakai, Hyperscaling inequalities for the contact process and oriented percolation, J. Stat. Phys.106 (2002) 201-211. Zbl0993.82024MR1881726
- [37] G. Slade, Lattice trees, percolation and super-Brownian motion, in: Bramson M., Durrett R. (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. Zbl0942.60072MR1703123
- [38] G. Slade, Scaling limits and super-Brownian motion, Notices Amer. Math. Soc.49 (9) (2002) 1056-1067. Zbl1126.60322MR1927455
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.