Convergence of critical oriented percolation to super-brownian motion above 4 + 1 dimensions

Remco Van der Hofstad; Gordon Slade

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 3, page 413-485
  • ISSN: 0246-0203

How to cite

top

Van der Hofstad, Remco, and Slade, Gordon. "Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions." Annales de l'I.H.P. Probabilités et statistiques 39.3 (2003): 413-485. <http://eudml.org/doc/77769>.

@article{VanderHofstad2003,
author = {Van der Hofstad, Remco, Slade, Gordon},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {oriented percolation; super-Brownian motion; lace expansion},
language = {eng},
number = {3},
pages = {413-485},
publisher = {Elsevier},
title = {Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions},
url = {http://eudml.org/doc/77769},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Van der Hofstad, Remco
AU - Slade, Gordon
TI - Convergence of critical oriented percolation to super-brownian motion above $4+1$ dimensions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 3
SP - 413
EP - 485
LA - eng
KW - oriented percolation; super-Brownian motion; lace expansion
UR - http://eudml.org/doc/77769
ER -

References

top
  1. [1] R.J. Adler, Superprocess local and intersection local times and their corresponding particle pictures, in: Çinlar E., Chung K.L., Sharpe M.J. (Eds.), Seminar on Stochastic Processes 1992, Birkhäuser, Boston, 1993, pp. 1-42. Zbl0786.60103MR1278075
  2. [2] M. Aizenman, D.J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys.108 (1987) 489-526. Zbl0618.60098MR874906
  3. [3] M. Aizenman, C.M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys.36 (1984) 107-143. Zbl0586.60096MR762034
  4. [4] D. Aldous, Tree-based models for random distribution of mass, J. Stat. Phys.73 (1993) 625-641. Zbl1102.60318MR1251658
  5. [5] M.T. Barlow, E.A. Perkins, On the filtration of historical Brownian motion, Ann. Probab.22 (1994) 1273-1294. Zbl0816.60044MR1303645
  6. [6] C. Bezuidenhout, G. Grimmett, The critical contact process dies out, Ann. Probab.18 (1990) 1462-1482. Zbl0718.60109MR1071804
  7. [7] E. Bolthausen, C. Ritzmann, A central limit theorem for convolution equations and weakly self-avoiding walks, Ann. Probab., to appear. Zbl06571500
  8. [8] D.C. Brydges, T. Spencer, Self-avoiding walk in 5 or more dimensions, Comm. Math. Phys.97 (1985) 125-148. Zbl0575.60099MR782962
  9. [9] J.T. Cox, R. Durrett, E.A. Perkins, Rescaled voter models converge to super-Brownian motion, Ann. Probab.28 (2000) 185-234. Zbl1044.60092MR1756003
  10. [10] T. Cox, R. Durrett, E.A. Perkins, Rescaled particle systems converging to super-Brownian motion, in: Bramson M., Durrett R. (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. Zbl0941.60095MR1703136
  11. [11] D.A. Dawson, Measure-Valued Markov Processes, in: Ecole d'Eté de Probabilités de Saint-Flour 1991, Lecture Notes in Mathematics, 1541, Springer, Berlin, 1993. Zbl0799.60080MR1242575
  12. [12] E. Derbez, G. Slade, Lattice trees and super-Brownian motion, Canad. Math. Bull.40 (1997) 19-38. Zbl0874.60091MR1443722
  13. [13] E. Derbez, G. Slade, The scaling limit of lattice trees in high dimensions, Comm. Math. Phys.193 (1998) 69-104. Zbl0915.60076MR1620301
  14. [14] R. Durrett, E.A. Perkins, Rescaled contact processes converge to super-Brownian motion in two or more dimensions, Probab. Theory Related Fields114 (1999) 309-399. Zbl0953.60093MR1705115
  15. [15] E.B. Dynkin, Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times, Astérisque157–158 (1988) 147-171. Zbl0659.60105
  16. [16] E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, American Mathematical Society, Providence, RI, 1994. Zbl0824.60001MR1280712
  17. [17] A.M. Etheridge, An Introduction to Superprocesses, American Mathematical Society, Providence, RI, 2000. Zbl0971.60053MR1779100
  18. [18] G. Grimmett, Percolation, Springer, Berlin, 1999. Zbl0926.60004MR1707339
  19. [19] G. Grimmett, P. Hiemer, Directed percolation and random walk, in: Sidoravicius V. (Ed.), In and Out of Equilibrium, Birkhäuser, Boston, 2002, pp. 273-297. Zbl1010.60087MR1901958
  20. [20] T. Hara, G. Slade, Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys.128 (1990) 333-391. Zbl0698.60100MR1043524
  21. [21] T. Hara, G. Slade, The number and size of branched polymers in high dimensions, J. Stat. Phys.67 (1992) 1009-1038. Zbl0925.82231MR1170084
  22. [22] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Stat. Phys.99 (2000) 1075-1168. Zbl0968.82016MR1773141
  23. [23] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion, J. Math. Phys.41 (2000) 1244-1293. Zbl0977.82022MR1757958
  24. [24] R. van der Hofstad, F. den Hollander, G. Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions, Comm. Math. Phys.231 (2002) 435-461. Zbl1013.82017MR1946445
  25. [25] R. van der Hofstad, F. den Hollander, G. Slade, A new inductive approach to the lace expansion for self-avoiding walks, Probab. Theory Related Fields111 (1998) 253-286. Zbl0906.60078MR1633582
  26. [26] R. van der Hofstad, G. Slade, The lace expansion on a tree with application to networks of self-avoiding walks, Adv. Appl. Math., to appear. Zbl1027.60098MR1973954
  27. [27] R. van der Hofstad, G. Slade, A generalised inductive approach to the lace expansion, Probab. Theory Related Fields122 (2002) 389-430. Zbl1002.60095MR1892852
  28. [28] J.-F. Le Gall, Spatial Branching Processes, Random Snakes, and Partial Differential Equations, Birkhäuser, Basel, 1999. Zbl0938.60003MR1714707
  29. [29] N. Madras, G. Slade, The Self-Avoiding Walk, Birkhäuser, Boston, 1993. Zbl0872.60076MR1197356
  30. [30] M.V. Menshikov, Coincidence of critical points in percolation problems, Soviet Math. Dokl.33 (1986) 856-859. Zbl0615.60096MR852458
  31. [31] B.G. Nguyen, W.-S. Yang, Triangle condition for oriented percolation in high dimensions, Ann. Probab.21 (1993) 1809-1844. Zbl0806.60097MR1245291
  32. [32] B.G. Nguyen, W.S. Yang, Gaussian limit for critical oriented percolation in high dimensions, J. Stat. Phys.78 (1995) 841-876. Zbl1114.82304MR1315235
  33. [33] S.P. Obukhov, The problem of directed percolation, Phys.101A (1980) 145-155. MR572004
  34. [34] E. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in: Bernard P.L. (Ed.), Lectures on Probability Theory and Statistics. Ecole d'Eté de Probabilités de Saint-Flour XXIX-1999, Lecture Notes in Mathematics, 1781, Springer, Berlin, 2002, pp. 125-329. Zbl1020.60075
  35. [35] A. Sakai, Mean-field critical behavior for the contact process, J. Stat. Phys.104 (2001) 111-143. Zbl1019.82012MR1851386
  36. [36] A. Sakai, Hyperscaling inequalities for the contact process and oriented percolation, J. Stat. Phys.106 (2002) 201-211. Zbl0993.82024MR1881726
  37. [37] G. Slade, Lattice trees, percolation and super-Brownian motion, in: Bramson M., Durrett R. (Eds.), Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, Birkhäuser, Basel, 1999. Zbl0942.60072MR1703123
  38. [38] G. Slade, Scaling limits and super-Brownian motion, Notices Amer. Math. Soc.49 (9) (2002) 1056-1067. Zbl1126.60322MR1927455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.