A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space

Sergio Solimini

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 3, page 319-337
  • ISSN: 0294-1449

How to cite

top

Solimini, Sergio. "A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space." Annales de l'I.H.P. Analyse non linéaire 12.3 (1995): 319-337. <http://eudml.org/doc/78361>.

@article{Solimini1995,
author = {Solimini, Sergio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness; bounded sequences of functions in a Sobolev space with respect to Lorentz norms},
language = {eng},
number = {3},
pages = {319-337},
publisher = {Gauthier-Villars},
title = {A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space},
url = {http://eudml.org/doc/78361},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Solimini, Sergio
TI - A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 3
SP - 319
EP - 337
LA - eng
KW - concentration-compactness; bounded sequences of functions in a Sobolev space with respect to Lorentz norms
UR - http://eudml.org/doc/78361
ER -

References

top
  1. [1] A. Alvino, P.L. Lions and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Analysis, T.M.A., Vol. 13, 1989, pp. 185-220. Zbl0678.49003MR979040
  2. [2] D. Fortunato, E. Jannelli and S. Solimini, in preparation. 
  3. [3] V. Glaser, A. Martin, H. Grosse and W. Thirring, A family of optimal conditions for the absence of bound states in a potential, in "Studies in Mathematical Physics ", E. H. Lieb, B. Simon and A. S. Wightman eds., Princeton University Press, 1976, pp. 169-194. Zbl0332.31004
  4. [4] P.L. Lions,The Concentration-Compactness Principle in the Calculus of Variations. The locally compact case-Part I, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 109-145. Zbl0541.49009MR778970
  5. [5] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The locally compact case-Part II, Ann. Inst. H. Poincare, Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
  6. [6] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case-Part I, Rev. Mat. Iberoamericana, Vol. 1, No. 1, 1985, pp. 145-201. Zbl0704.49005MR834360
  7. [7] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case-Part II, Rev. Mat. Iberoamericana, Vol. 1, No. 2, 1985, pp. 45-121. Zbl0704.49006MR850686
  8. [8] A. Manes and A.M. Micheletti, Un' estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. UMI, 1973, pp. 285-301. Zbl0275.49042MR344663
  9. [9] R.O.' Neil, Convolution operators and L(p, q) spaces, Duke Math. J., Vol. 30, 1963, pp. 129-142. Zbl0178.47701MR146673
  10. [10] S. Pohozaev, Eigenfunction of the equation Δu + λf(u) = 0, Soviet Math. Doklady, Vol. 6, 1965, pp. 1408-1411. 
  11. [11] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.