The p-harmonic system with measure-valued right hand side
Georg Dolzmann; Norbert Hungerbühler; Stefan Müller
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 3, page 353-364
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDolzmann, Georg, Hungerbühler, Norbert, and Müller, Stefan. "The p-harmonic system with measure-valued right hand side." Annales de l'I.H.P. Analyse non linéaire 14.3 (1997): 353-364. <http://eudml.org/doc/78415>.
@article{Dolzmann1997,
author = {Dolzmann, Georg, Hungerbühler, Norbert, Müller, Stefan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplacian; Radon measure; Lorentz space estimate; regularized test function; localization argument},
language = {eng},
number = {3},
pages = {353-364},
publisher = {Gauthier-Villars},
title = {The p-harmonic system with measure-valued right hand side},
url = {http://eudml.org/doc/78415},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Dolzmann, Georg
AU - Hungerbühler, Norbert
AU - Müller, Stefan
TI - The p-harmonic system with measure-valued right hand side
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 3
SP - 353
EP - 364
LA - eng
KW - -Laplacian; Radon measure; Lorentz space estimate; regularized test function; localization argument
UR - http://eudml.org/doc/78415
ER -
References
top- [1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 22, 1995, pp. 241-273. Zbl0866.35037MR1354907
- [2] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal., Vol. 87, 1989, pp. 149-169. Zbl0707.35060MR1025884
- [3] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures. Comm. Part. Diff. Eqn., Vol. 17, 1992, pp. 641-655. Zbl0812.35043MR1163440
- [4] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal., Vol. 19, 1992, pp. 581-597. Zbl0783.35020MR1183665
- [5] Y. Chen, M.-C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres. Math. Z., Vol. 215, 1994, pp. 25-35. Zbl0793.53049MR1254812
- [6] E. Dibenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math., Vol. 115, 1993, pp. 1107-1134. Zbl0805.35037MR1246185
- [7] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conf. Ser. in Math., No. 74, Am. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
- [8] L.C. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (etc.), 1992. Zbl0804.28001MR1158660
- [9] Fuchs , M.The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition. Manuscr. Math., Vol. 46, 1984, pp. 97-115. Zbl0552.35025MR735516
- [10] M. Fuchs, The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwend., Vol. 5 (6), 1986, pp. 507-531. Zbl0634.35023MR894243
- [11] M. Fuchs, The blow-up of p-harmonic maps. Manuscr. Math., Vol. 81, 1993, pp. 89-94. Zbl0794.58012MR1247590
- [12] M. Fuchs and J. Reuling, Non-linear elliptic systems involving measure data. Rend. Math. Appl., Vol. 15, 1995, pp. 311-319. Zbl0838.35133MR1339247
- [13] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations. Manuscr. Math., Vol. 37, 1982, pp. 303-342. Zbl0485.35031MR657523
- [14] P.L. Lions and F. Murat, Solutions renormalisées d'equations elliptiques (to appear).
- [15] S. Müller, Det = det. A remark on the distributional determinant. C.R. Acad. Sci., Paris, Sér. I, Vol. 311, 1990, pp. 13-17. Zbl0717.46033MR1062920
- [16] F. Murat, Équations elliptiques non linéaires avec second membre L1 ou mesure. Preprint.
- [17] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales. Publications du Laboratoire d'Analyse Numérique R93023, 1993.
- [181 J.M. Rakotoson, Generalized solutions in a new type of sets for problems with measure data. Differ. Integral Eqn., Vol. 6, 1993, pp. 27-36. Zbl0780.35047MR1190163
- [19] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl., IV. Ser., Vol. 120, 1979, pp. 159-184. Zbl0419.35041MR551065
Citations in EuDML Documents
top- Gianni Dal Maso, Annalisa Malusa, Some properties of reachable solutions of nonlinear elliptic equations with measure data
- Francesco Leonetti, Pier Vincenzo Petricca, Nonlinear Elliptic Systems with Measure Data in Low Dimension
- Tadeusz Iwaniec, Nonlinear analysis and quasiconformal mappings from the perspective of PDEs
- Giuseppe Mingione, The Calderón-Zygmund theory for elliptic problems with measure data
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.