Macroscopic limit of Vlasov type equations with friction

Pierre-Emmanuel Jabin

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 5, page 651-672
  • ISSN: 0294-1449

How to cite

top

Jabin, Pierre-Emmanuel. "Macroscopic limit of Vlasov type equations with friction." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 651-672. <http://eudml.org/doc/78504>.

@article{Jabin2000,
author = {Jabin, Pierre-Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {kinetic equation; modified Vlasov-Stokes system; limit system},
language = {eng},
number = {5},
pages = {651-672},
publisher = {Gauthier-Villars},
title = {Macroscopic limit of Vlasov type equations with friction},
url = {http://eudml.org/doc/78504},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Jabin, Pierre-Emmanuel
TI - Macroscopic limit of Vlasov type equations with friction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 651
EP - 672
LA - eng
KW - kinetic equation; modified Vlasov-Stokes system; limit system
UR - http://eudml.org/doc/78504
ER -

References

top
  1. [1] Allaire G., Homogenization and two-scale convergence, SIAM J. Math. Anal. XXIII (12) (1992) 1482-1518. Zbl0770.35005MR1185639
  2. [2] Arsenev A.A., Global existence of a weak solution of Vlasov's system of equations, USSR Comp. Math. and Math. Phys.15 (1975) 131-141. MR371322
  3. [3] Brenier Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. PDE, to appear. Zbl0970.35110MR1748352
  4. [4] DiPerna R.J., Lions P.L., Solutions globales d'équations du type Vlasov-Poisson, C.R. Acad. Sci. Paris Sér. I307 (1988) 655-658. Zbl0682.35022MR967806
  5. [5] Frénod E., Sonnendrücker E., Long time behaviour of the two-dimensional Vlasov equation with a strong external magnetic field, INRIA Report, 3428, 1998. Zbl0936.82032
  6. [6] Gasser I., Jabin P.-E., Perthame B., Regularity and propagation of moments in some nonlinear Vlasov systems, Work in preparation. Zbl0984.35102
  7. [7] Glassey R.T., The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Zbl0858.76001MR1379589
  8. [8] Golse F., Saint-Raymond L., The Vlasov-Poisson system with strong magnetic field, LMENS99 (2) (1999). Zbl0977.35108MR1715342
  9. [9] Grenier E., Defect measures of the Vlasov-Poisson system, Comm. PDE21 (1996) 363-394. 
  10. [10] N'Guetseng G., A general convergence result for a functional related to the theory of homogeneization, SIAM J. Math. Anal.20 (1989) 608-623. Zbl0688.35007MR990867
  11. [11] Hamdache K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math.15 (1998) 51-74. Zbl1306.76052MR1610309
  12. [12] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed bubbles in a potential flow, Siam J. Appl. Math, to appear. Zbl0964.76085
  13. [13] Horst E., On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Math. Meth. in the Appl. Sci.3 (1981) 229-248. Zbl0463.35071MR657294
  14. [14] Jabin P.-E., Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE, to appear. Zbl0965.35014MR1748358
  15. [15] Jabin P.-E., Perthame B., Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in: Bellomo N., Pulvirenti M. (Eds.), Modelling in Applied Sciences, a Kinetic Theory Approach, to appear. Zbl0957.76087MR1763153
  16. [16] Rubinstein J., Keller J.B., Particle distribution functions in suspensions, Phys. Fluids A1 (1989) 1632-1641. Zbl0683.76002MR1022607
  17. [17] Russo G., Smereka P., Kinetic theory for bubbly flow I and II, SIAM J. Appl. Math.56 (1996) 327-371. Zbl0857.76090MR1381649
  18. [18] Sandor V., The Euler-Poisson system with pressure zero as singular limit of the Vlasov-Poisson system, the spherically symmetric case, Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.