Macroscopic limit of Vlasov type equations with friction
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 5, page 651-672
- ISSN: 0294-1449
Access Full Article
topHow to cite
topJabin, Pierre-Emmanuel. "Macroscopic limit of Vlasov type equations with friction." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 651-672. <http://eudml.org/doc/78504>.
@article{Jabin2000,
author = {Jabin, Pierre-Emmanuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {kinetic equation; modified Vlasov-Stokes system; limit system},
language = {eng},
number = {5},
pages = {651-672},
publisher = {Gauthier-Villars},
title = {Macroscopic limit of Vlasov type equations with friction},
url = {http://eudml.org/doc/78504},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Jabin, Pierre-Emmanuel
TI - Macroscopic limit of Vlasov type equations with friction
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 651
EP - 672
LA - eng
KW - kinetic equation; modified Vlasov-Stokes system; limit system
UR - http://eudml.org/doc/78504
ER -
References
top- [1] Allaire G., Homogenization and two-scale convergence, SIAM J. Math. Anal. XXIII (12) (1992) 1482-1518. Zbl0770.35005MR1185639
- [2] Arsenev A.A., Global existence of a weak solution of Vlasov's system of equations, USSR Comp. Math. and Math. Phys.15 (1975) 131-141. MR371322
- [3] Brenier Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. PDE, to appear. Zbl0970.35110MR1748352
- [4] DiPerna R.J., Lions P.L., Solutions globales d'équations du type Vlasov-Poisson, C.R. Acad. Sci. Paris Sér. I307 (1988) 655-658. Zbl0682.35022MR967806
- [5] Frénod E., Sonnendrücker E., Long time behaviour of the two-dimensional Vlasov equation with a strong external magnetic field, INRIA Report, 3428, 1998. Zbl0936.82032
- [6] Gasser I., Jabin P.-E., Perthame B., Regularity and propagation of moments in some nonlinear Vlasov systems, Work in preparation. Zbl0984.35102
- [7] Glassey R.T., The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Zbl0858.76001MR1379589
- [8] Golse F., Saint-Raymond L., The Vlasov-Poisson system with strong magnetic field, LMENS99 (2) (1999). Zbl0977.35108MR1715342
- [9] Grenier E., Defect measures of the Vlasov-Poisson system, Comm. PDE21 (1996) 363-394.
- [10] N'Guetseng G., A general convergence result for a functional related to the theory of homogeneization, SIAM J. Math. Anal.20 (1989) 608-623. Zbl0688.35007MR990867
- [11] Hamdache K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math.15 (1998) 51-74. Zbl1306.76052MR1610309
- [12] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed bubbles in a potential flow, Siam J. Appl. Math, to appear. Zbl0964.76085
- [13] Horst E., On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Math. Meth. in the Appl. Sci.3 (1981) 229-248. Zbl0463.35071MR657294
- [14] Jabin P.-E., Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE, to appear. Zbl0965.35014MR1748358
- [15] Jabin P.-E., Perthame B., Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in: Bellomo N., Pulvirenti M. (Eds.), Modelling in Applied Sciences, a Kinetic Theory Approach, to appear. Zbl0957.76087MR1763153
- [16] Rubinstein J., Keller J.B., Particle distribution functions in suspensions, Phys. Fluids A1 (1989) 1632-1641. Zbl0683.76002MR1022607
- [17] Russo G., Smereka P., Kinetic theory for bubbly flow I and II, SIAM J. Appl. Math.56 (1996) 327-371. Zbl0857.76090MR1381649
- [18] Sandor V., The Euler-Poisson system with pressure zero as singular limit of the Vlasov-Poisson system, the spherically symmetric case, Preprint.
Citations in EuDML Documents
top- Thierry Goudon, Frédéric Poupaud, On the modeling of the transport of particles in turbulent flows
- Thierry Goudon, Frédéric Poupaud, On the modeling of the transport of particles in turbulent flows
- Thierry Goudon, Pierre-Emmanuel Jabin, Alexis Vasseur, Limites hydrodynamiques pour les équations de Vlasov-Stokes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.