Existence of solutions for compressible fluid models of Korteweg type

Raphaël Danchin; Benoît Desjardins

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 1, page 97-133
  • ISSN: 0294-1449

How to cite

top

Danchin, Raphaël, and Desjardins, Benoît. "Existence of solutions for compressible fluid models of Korteweg type." Annales de l'I.H.P. Analyse non linéaire 18.1 (2001): 97-133. <http://eudml.org/doc/78514>.

@article{Danchin2001,
author = {Danchin, Raphaël, Desjardins, Benoît},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {uniqueness; Korteweg equations; phase transition; isothermal capillary compressible fluids; well-posedness; critical Besov spaces; global existence; stable equilibrium; local in time existence; pressure law; weak solutions},
language = {eng},
number = {1},
pages = {97-133},
publisher = {Elsevier},
title = {Existence of solutions for compressible fluid models of Korteweg type},
url = {http://eudml.org/doc/78514},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Danchin, Raphaël
AU - Desjardins, Benoît
TI - Existence of solutions for compressible fluid models of Korteweg type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 1
SP - 97
EP - 133
LA - eng
KW - uniqueness; Korteweg equations; phase transition; isothermal capillary compressible fluids; well-posedness; critical Besov spaces; global existence; stable equilibrium; local in time existence; pressure law; weak solutions
UR - http://eudml.org/doc/78514
ER -

References

top
  1. 1 Anderson D.M, McFadden G.B, Wheeler A.A, Diffuse-interface methods in fluid mech., Ann. Rev. Fluid Mech.Vol. 30 (1998) 139-165. MR1609626
  2. 2 Bahouri H, Chemin J.-Y, Équations d'ondes quasilinéaires et estimations de Strichartz, Amer. J. MathematicsVol. 121 (1999) 1337-1377. Zbl0952.35073MR1719798
  3. 3 Benzoni-Gavage S, Stability of multidimensional phase transitions in a Van der Waals fluid, Nonlinear Anal. TMAVol. 31 (1/2) (1998) 243-263. Zbl0928.76015MR1487544
  4. 4 Bony J.-M, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales Scientifiques de l'école Normale SupérieureVol. 14 (1981) 209-246. Zbl0495.35024MR631751
  5. 5 Bourdaud G, Réalisations des espaces de Besov homogènes, Arkiv för MatematikVol. 26 (1988) 41-54. Zbl0661.46026MR948279
  6. 6 Cahn J.W, Hilliard J.E, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys.Vol. 28 (1998) 258-267. 
  7. 7 Chemin J.-Y, Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. d'Analyse Math.Vol. 77 (1999) 27-50. Zbl0938.35125
  8. 8 Chemin J.-Y, About Navier–Stokes system, Prépublication du Laboratoire d'Analyse Numérique de Paris 6Vol. R96023 (1996). Zbl0876.35086
  9. 9 Chemin J.-Y, Lerner N, Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential EquationsVol. 121 (1992) 314-328. Zbl0878.35089
  10. 10 Desjardins B, Regularity of weak solutions of the compressible isentropic Navier–Stokes equations, Comm. Partial Differential EquationsVol. 22 (5-6) (1997) 977-1008. Zbl0885.35089
  11. 11 Dunn J.E, Serrin J, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal.Vol. 88 (2) (1985) 95-133. Zbl0582.73004MR775366
  12. 12 Gurtin M.E, Polignone D, Vinals J, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.Vol. 6 (6) (1996) 815-831. Zbl0857.76008MR1404829
  13. 13 Hattori H, Li D, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential EquationsVol. 9 (4) (1996) 323-342. Zbl0881.35095MR1426082
  14. 14 Hattori H, Li D, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl.Vol. 198 (1) (1996) 84-97. Zbl0858.35124MR1373528
  15. 15 Hoff D, Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential EquationsVol. 120 (1) (1995) 215-254. Zbl0836.35120
  16. 16 Korteweg D.J, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Archives Néerlandaises de Sciences Exactes et NaturellesVol. II 6 (1901) 1-24. Zbl32.0756.02JFM32.0756.02
  17. 17 Lions P.L, Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Sér. I Math.Vol. 316 (12) (1993) 1335-1340. Zbl0778.76086
  18. 18 Lions P.L, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford University Press, 1998. Zbl0908.76004MR1637634
  19. 19 Matsumura A, Nishida T, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ.Vol. 20 (1) (1980) 67-104. Zbl0429.76040MR564670
  20. 20 Nadiga B.T, Zaleski S, Investigations of a two-phase fluid model, European J. Mech. B – FluidsVol. 15 (6) (1996) 885-896. Zbl0886.76097
  21. 21 Peetre J, New Thoughts on Besov Spaces, Duke University Mathematical Series 1, Durham N. C., 1976. Zbl0356.46038MR461123
  22. 22 Xin Z, Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density, Comm. Pure Appl. Math.Vol. 51 (3) (1998) 229-240. Zbl0937.35134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.