Existence of solutions for compressible fluid models of Korteweg type
Raphaël Danchin; Benoît Desjardins
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 1, page 97-133
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDanchin, Raphaël, and Desjardins, Benoît. "Existence of solutions for compressible fluid models of Korteweg type." Annales de l'I.H.P. Analyse non linéaire 18.1 (2001): 97-133. <http://eudml.org/doc/78514>.
@article{Danchin2001,
author = {Danchin, Raphaël, Desjardins, Benoît},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {uniqueness; Korteweg equations; phase transition; isothermal capillary compressible fluids; well-posedness; critical Besov spaces; global existence; stable equilibrium; local in time existence; pressure law; weak solutions},
language = {eng},
number = {1},
pages = {97-133},
publisher = {Elsevier},
title = {Existence of solutions for compressible fluid models of Korteweg type},
url = {http://eudml.org/doc/78514},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Danchin, Raphaël
AU - Desjardins, Benoît
TI - Existence of solutions for compressible fluid models of Korteweg type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 1
SP - 97
EP - 133
LA - eng
KW - uniqueness; Korteweg equations; phase transition; isothermal capillary compressible fluids; well-posedness; critical Besov spaces; global existence; stable equilibrium; local in time existence; pressure law; weak solutions
UR - http://eudml.org/doc/78514
ER -
References
top- 1 Anderson D.M, McFadden G.B, Wheeler A.A, Diffuse-interface methods in fluid mech., Ann. Rev. Fluid Mech.Vol. 30 (1998) 139-165. MR1609626
- 2 Bahouri H, Chemin J.-Y, Équations d'ondes quasilinéaires et estimations de Strichartz, Amer. J. MathematicsVol. 121 (1999) 1337-1377. Zbl0952.35073MR1719798
- 3 Benzoni-Gavage S, Stability of multidimensional phase transitions in a Van der Waals fluid, Nonlinear Anal. TMAVol. 31 (1/2) (1998) 243-263. Zbl0928.76015MR1487544
- 4 Bony J.-M, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales Scientifiques de l'école Normale SupérieureVol. 14 (1981) 209-246. Zbl0495.35024MR631751
- 5 Bourdaud G, Réalisations des espaces de Besov homogènes, Arkiv för MatematikVol. 26 (1988) 41-54. Zbl0661.46026MR948279
- 6 Cahn J.W, Hilliard J.E, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys.Vol. 28 (1998) 258-267.
- 7 Chemin J.-Y, Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. d'Analyse Math.Vol. 77 (1999) 27-50. Zbl0938.35125
- 8 Chemin J.-Y, About Navier–Stokes system, Prépublication du Laboratoire d'Analyse Numérique de Paris 6Vol. R96023 (1996). Zbl0876.35086
- 9 Chemin J.-Y, Lerner N, Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential EquationsVol. 121 (1992) 314-328. Zbl0878.35089
- 10 Desjardins B, Regularity of weak solutions of the compressible isentropic Navier–Stokes equations, Comm. Partial Differential EquationsVol. 22 (5-6) (1997) 977-1008. Zbl0885.35089
- 11 Dunn J.E, Serrin J, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal.Vol. 88 (2) (1985) 95-133. Zbl0582.73004MR775366
- 12 Gurtin M.E, Polignone D, Vinals J, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.Vol. 6 (6) (1996) 815-831. Zbl0857.76008MR1404829
- 13 Hattori H, Li D, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential EquationsVol. 9 (4) (1996) 323-342. Zbl0881.35095MR1426082
- 14 Hattori H, Li D, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl.Vol. 198 (1) (1996) 84-97. Zbl0858.35124MR1373528
- 15 Hoff D, Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential EquationsVol. 120 (1) (1995) 215-254. Zbl0836.35120
- 16 Korteweg D.J, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Archives Néerlandaises de Sciences Exactes et NaturellesVol. II 6 (1901) 1-24. Zbl32.0756.02JFM32.0756.02
- 17 Lions P.L, Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Sér. I Math.Vol. 316 (12) (1993) 1335-1340. Zbl0778.76086
- 18 Lions P.L, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford University Press, 1998. Zbl0908.76004MR1637634
- 19 Matsumura A, Nishida T, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ.Vol. 20 (1) (1980) 67-104. Zbl0429.76040MR564670
- 20 Nadiga B.T, Zaleski S, Investigations of a two-phase fluid model, European J. Mech. B – FluidsVol. 15 (6) (1996) 885-896. Zbl0886.76097
- 21 Peetre J, New Thoughts on Besov Spaces, Duke University Mathematical Series 1, Durham N. C., 1976. Zbl0356.46038MR461123
- 22 Xin Z, Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density, Comm. Pure Appl. Math.Vol. 51 (3) (1998) 229-240. Zbl0937.35134
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.