Nonhomogeneous Cahn–Hilliard fluids

Franck Boyer

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 2, page 225-259
  • ISSN: 0294-1449

How to cite

top

Boyer, Franck. "Nonhomogeneous Cahn–Hilliard fluids." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 225-259. <http://eudml.org/doc/78519>.

@article{Boyer2001,
author = {Boyer, Franck},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonhomogeneous diphasic incompressible flow; incompressible Navier-Stokes equations; local existence; regular solution; global weak solution; unique local strong solution; asymptotic stability; metastable states},
language = {eng},
number = {2},
pages = {225-259},
publisher = {Elsevier},
title = {Nonhomogeneous Cahn–Hilliard fluids},
url = {http://eudml.org/doc/78519},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Boyer, Franck
TI - Nonhomogeneous Cahn–Hilliard fluids
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 225
EP - 259
LA - eng
KW - nonhomogeneous diphasic incompressible flow; incompressible Navier-Stokes equations; local existence; regular solution; global weak solution; unique local strong solution; asymptotic stability; metastable states
UR - http://eudml.org/doc/78519
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] Alikakos N., Bates P., Fusco G., Slow motion for the Cahn–Hilliard equation in one space dimension, J. Differential Equation90 (1991) 81-135. Zbl0753.35042
  3. [3] Agmon S., Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, 2, 1965. Zbl0142.37401MR178246
  4. [4] Bates P.W., Fife P.C., The dynamics of nucleation for the Cahn–Hilliard equation, SIAM J. Appl. Math.53 (4) (1993) 990-1008. Zbl0788.35061
  5. [5] Boyer F., Mathematical study of multiphase flow under shear through order parameter formulation, Asymptotic Analysis20 (2) (1999) 175-212. Zbl0937.35123MR1700669
  6. [6] Boyer F., A theoretical and numerical model for the study of incompressible mixture flows, Computers and Fluids (2000), to appear. Zbl1057.76060MR1870172
  7. [7] Colin A., Panizza P., Private communications. 
  8. [8] Carr J., Gurtin M., Slemrod M., Structured phase transitions on a finite interval, Arch. Rational Mech. Anal.86 (1984) 317-351. Zbl0564.76075MR759767
  9. [9] Chella R., Vinals J., Mixing of a two-phase fluid by a cavity flow, Physical Review E53 (1996) 3832. 
  10. [10] Debussche A., Dettori L., On the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Analysis24 (10) (1995) 1491-1514. Zbl0831.35088
  11. [11] Doi M., Dynamics of domains and textures, in: Theoretical Challenges in the Dynamics of Complex Fluids, 1997, pp. 293-314. 
  12. [12] Elliott C.M., Garcke H., On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal.27 (2) (1996) 404-423. Zbl0856.35071
  13. [13] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
  14. [14] Gunton J.D., San Miguel M., Sahni P.S., Domb, Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 8, Academic, London, 1983. MR794319
  15. [15] Gurtin M.E., Polignone D., Vinals J., Two-phase binary fluids and immiscible fluids described by an order parameter, Mathematical Models and Methods in Applied Sciences6 (1996) 815. Zbl0857.76008MR1404829
  16. [16] Horgan C.O., Korn's inequalities and their applications in continuum mechanics, SIAM Review37 (4) (1995) 491-511. Zbl0840.73010MR1368384
  17. [17] Jasnow D., Vinals J., Coarse-grained description of thermo-capillary flow, Phys. Fluids8 (1996) 660. Zbl1025.76521
  18. [18] Lions J.L., Magenes E., Problèmes aux Limites non Homogènes et Applications, Dunod, 1968. Zbl0165.10801
  19. [19] Lions P.L., Mathematical Topics in Fluid Mechanics: Vol. 1, Incompressible Models, Oxford Science Publications, 1996. Zbl0866.76002MR1422251
  20. [20] Miranville A., Upper bound on the dimension of the attractor for the shear-layer flow in space dimension 3, in: Dynamical Systems, Stockholm, 1992, World Sci. Publishing, River Edge, NJ, 1993, pp. 61-74. MR1386915
  21. [21] Miranville A., A model of Cahn–Hilliard equation based on a microforce balance, C. R. Acad. Sci. Paris Sér. I Math.328 (12) (1999) 1247-1252. Zbl0932.35118
  22. [22] Nicolaenko B., Scheurer B., Temam R., Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations14 (2) (1989) 245-297. Zbl0691.35019MR976973
  23. [23] Onuki A., Phase transitions of fluids in shear flow, J. Phys.: Condens. Matter9 (1997) 6119-6157. 
  24. [24] Simon J., Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl.146 (4) (1987) 65-96. Zbl0629.46031MR916688
  25. [25] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, 68, Springer-Verlag, 1997. Zbl0871.35001MR1441312
  26. [26] Temam R., Navier–Stokes Equations, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1977. Zbl0383.35057
  27. [27] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. Henri Poincaré: Analyse non linéaire15 (4) (1998) 459-492. Zbl0910.35049
  28. [28] Wei J., Winter M., On the stationary Cahn–Hilliard equation: interior spike solutions, J. Differential Equations148 (2) (1998) 231-267. Zbl0965.35070
  29. [29] Wei J., Winter M., On the stationary Cahn–Hilliard equation: bubble solutions, SIAM J. Math. Anal.29 (6) (1998) 1492-1518. Zbl0918.35023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.