Asymmetric elliptic problems with indefinite weights

M. Arias; J. Campos; M. Cuesta; J.-P. Gossez

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 5, page 581-616
  • ISSN: 0294-1449

How to cite

top

Arias, M., et al. "Asymmetric elliptic problems with indefinite weights." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 581-616. <http://eudml.org/doc/78555>.

@article{Arias2002,
author = {Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {eigenvalue problem; Fučik spectrum; nonresonance problem},
language = {eng},
number = {5},
pages = {581-616},
publisher = {Elsevier},
title = {Asymmetric elliptic problems with indefinite weights},
url = {http://eudml.org/doc/78555},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Arias, M.
AU - Campos, J.
AU - Cuesta, M.
AU - Gossez, J.-P.
TI - Asymmetric elliptic problems with indefinite weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 581
EP - 616
LA - eng
KW - eigenvalue problem; Fučik spectrum; nonresonance problem
UR - http://eudml.org/doc/78555
ER -

References

top
  1. [1] Aguilar A., Peral I., On a elliptic equation with exponential growth, Rend. Univ. Padova96 (1996) 143-175. Zbl0887.35055MR1438296
  2. [2] M. Alif, J.-P. Gossez, On the Fučik spectrum with indefinite weights, Diff. Int. Equations, to appear. Zbl1028.34074MR1859919
  3. [3] Anane A., Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, Thèse de Doctorat, Université Libre de Bruxelles, 1987, See also C. R. Acad. Sci. Paris 305 (1987) 725–728. Zbl0633.35061
  4. [4] Anane A., Chakrone O., Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propres du p-laplacien, Ann. Fac. Sc. Toulouse9 (2000) 5-30. Zbl0971.35031MR1815938
  5. [5] Anane A., Gossez J.-P., Strongly nonlinear elliptic problems near resonance: A variational approach, Com. P. D. E.15 (1990) 1141-1159. Zbl0715.35029MR1070239
  6. [6] Anane A., Tsouli N., On the second eigenvalue of the p-laplacian, in: Benkirane A., Gossez J.-P. (Eds.), Nonlinear Partial Differential Equation, Pitman Res. Notes in Math., 343, 1996, pp. 1-9. Zbl0854.35081MR1417265
  7. [7] Arias J., Campos M., Fučik spectrum of a singular Sturm–Liouville problem, Nonlinear Analysis T. M. A.27 (1996) 679-697. Zbl0857.34037MR1399068
  8. [8] Arias M., Campos J., Exact number of solutions of a one-dimensional Dirichlet problem with jumping nonlinearities, Differential Equations Dynam. Systems5 (1997) 139-161. Zbl0892.34017MR1657254
  9. [9] Arias M., Campos J., Cuesta M., Gossez J.-P., Sur certains problèmes elliptiques asymétriques avec poids indéfinis, C. R. Acad. Sci. Paris332 (2001) 215-218. Zbl0973.35147MR1817364
  10. [10] Arias M., Campos J., Gossez J.-P., On the antimaximum principle and the Fučik spectrum for the Neumann p-laplacian, Diff. Int. Equations13 (2000) 217-226. Zbl0979.35048MR1811956
  11. [11] Brezis H., Nirenberg L., Remarks on finding critical points, Com. Pure Appl. Math.44 (1991) 939-963. Zbl0751.58006MR1127041
  12. [12] Costa D., Oliveira A., Existence of solutions for a class of semilinear problems at double resonance, Boll. Soc. Brasil. Mat.19 (1988) 21-37. Zbl0704.35048MR1018926
  13. [13] Cuesta M., Eigenvalue problems for the p-laplacian with indefinite weight, Elec. J. Diff. Equations2001 (2001) 1-9. Zbl0964.35110MR1836801
  14. [14] M. Cuesta, Minimax theorems on C1 manifolds via Ekeland variational principle, to appear. Zbl1072.58004MR1996922
  15. [15] Cuesta M., De Figueiredo D., Gossez J.-P., The beginning of the Fučik spectrum of the p-laplacian, J. Differential Equations159 (1999) 212-238. Zbl0947.35068MR1726923
  16. [16] Cuesta M., Gossez J.-P., A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Analysis T. M. A.19 (1992) 487-500. Zbl0768.34025MR1181350
  17. [17] De Figueiredo D., Lectures on the Ekeland Variational Principle with Applications and Detours, TATA Institute, Springer-Verlag, 1989. Zbl0688.49011MR1019559
  18. [18] De Figueiredo D., Gossez J.-P., Strict monotonicity of eigenvalues and unique continuation, Com. P. D. E.17 (1992) 339-346. Zbl0777.35042MR1151266
  19. [19] De Figueiredo D., Gossez J.-P., On the first curve of the Fučik spectrum of an elliptic operator, Diff. Int. Equations7 (1994) 1285-1302. Zbl0797.35032MR1269657
  20. [20] De Figueiredo D., Massabo I., Semilinear elliptic equations with the primitive of the nonlinearity interacting with the first eigenvalue, J. Math. Anal. Appl.156 (1991) 381-394. Zbl0741.35013MR1103019
  21. [21] De Figueiredo D., Miyagaki O., Semilinear elliptic equations with the primitive of the nonlinearity away from the spectrum, Nonlinear Analysis T. M. A.17 (1991) 1201-1219. Zbl0809.35025MR1137903
  22. [22] Del Pino M., Elgueta M., Manasevich R., A homotopy deformation along p of a Leray–Schauder degree result and existence for (|u′|p−2u′)′+f(t,u)=0, u(0)=u(T)=0, p&gt;1, J. Differential Equations80 (1989) 1-13. Zbl0708.34019
  23. [23] Drabek P., Solvabiliy and Bifurcations of Nonlinear Equations, Pitman Research Notes in Mathematics, 264, 1992. Zbl0753.34002MR1175397
  24. [24] Drabek P., Robinson S., Resonance problems for the p-laplacian, J. Funct. Anal.169 (1999) 189-200. Zbl0940.35087MR1726752
  25. [25] Fleckinger J., Hernandez J., Takaǩ P., De Thelin F., Uniqueness and positivity of solutions of equations with the p-laplacian, in: Caristi G., Mitidieri E. (Eds.), Reaction Diffusion Systems, Lect. Notes P. Appl. Math., 194, M. Dekker, 1998, pp. 141-155. Zbl0912.35064
  26. [26] Fonda A., Gossez J.-P., On a nonresonance condition for a semilinear elliptic problem, Diff. Int. Equations4 (1991) 945-951. Zbl0735.35054MR1123345
  27. [27] Friedlander L., Asymptotic behaviour of the eignevalues of the p-laplacian, Com. P. D. E.14 (1989) 1059-1069. Zbl0704.35108
  28. [28] Ghoussoub N., Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, 107, Cambridge University Press, 1993. Zbl0790.58002MR1251958
  29. [29] Godoy T., Gossez J.-P., Paszka S., Antimaximum principle for elliptic problems with weight, Electr. J. Diff. Equations1999 (1999) 1-15. Zbl0920.35045
  30. [30] Gossez J.-P., Loulit A., A note on two notions of unique continuation, Bull. Soc. Math. Belgique45 (1993) 257-268. Zbl0828.35035MR1316725
  31. [31] Gossez J.-P., Omari P., Nonresonnance with respect tot the Fučik spectrum for periodic solutions of second order ordinary differential equations, Nonlinear Analysis T. M. A.14 (1990) 1079-1104. Zbl0724.34048MR1059615
  32. [32] Hammerstein A., Nichtlineare Integralgleichungen nebst anwendungen, Acta Math.54 (1930) 117-176. Zbl56.0343.03MR1555304JFM56.0343.03
  33. [33] Jerison D., Kenig C., Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math.121 (1985) 463-494. Zbl0593.35119MR794370
  34. [34] Lindqvist P., On the equation div (|∇u|p−2∇u)+λ|u|p−2u=0, Proc. Amer. Math. Soc.109 (1990) 157-166, Addendum, Proc. Amer. Math. Soc. 116 (1992) 583–584. Zbl0714.35029
  35. [35] Mahwin J., Ward J.R., Willem M., Variational methods and semilinear elliptic equations, Arch. Ration. Mech. Analysis95 (1986) 269-277. Zbl0656.35044MR853968
  36. [36] Reichel W., Walter W., Sturm–Liouville type problems for the p-laplacian under asymptotic nonresonance conditions, J. Differential Equations156 (1999) 50-70. Zbl0931.34059MR1701814
  37. [37] Rynne B., The Fučik spectrum of general Sturm–Liouville problems, J. Differential Equations161 (2000) 87-109. Zbl0976.34024MR1740358
  38. [38] Solimini S., Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. I. H. P. Analyse Non linéaire2 (1985) 143-156. Zbl0583.35044MR794004
  39. [39] Touzani A., Quelques résultats sur le Ap-laplacien avec poids indéfini, Thèse de Doctorat, Université Libre de Bruxelles, 1992. 
  40. [40] Zeidler E., Nonlinear Functional Analysis and its Applications, Vol. III (Variational Methods and Optimization), Springer-Verlag, 1984. Zbl0583.47051MR768749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.