Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 2, page 293-332
- ISSN: 0294-1449
Access Full Article
topHow to cite
topArisawa, Mariko. "Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 293-332. <http://eudml.org/doc/78580>.
@article{Arisawa2003,
author = {Arisawa, Mariko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {2},
pages = {293-332},
publisher = {Elsevier},
title = {Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions},
url = {http://eudml.org/doc/78580},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Arisawa, Mariko
TI - Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 293
EP - 332
LA - eng
UR - http://eudml.org/doc/78580
ER -
References
top- [1] Arisawa M., Ergodic problem for the Hamilton–Jacobi–Bellman equations I, Existence of the ergodic attractor, Ann. IHP Anal. Non Lineaire14 (1997) 415-438. Zbl0892.49015MR1464529
- [2] Arisawa M., Ergodic problem for the Hamilton–Jacobi equations II, Ann. IHP Anal. Non Linearire15 (1998) 1-24. Zbl0903.49018MR1614615
- [3] M. Arisawa, Multiscale homogenizations for first order Hamilton–Jacobi–Bellman equations, Differential and Integral Equations, to appear. MR1364034
- [4] M. Arisawa, Quasi-periodic homogenizations for second order Hamilton–Jacobi–Bellman equations, J. Math. Sci. Appl., to appear. Zbl1014.49018MR1842387
- [5] M. Arisawa, Y. Giga, Anisotropic curvature flows in a very thin domain, Hokkaido University Preprint Series in Mathematics 495 (2000), to appear in Indiana U. Math. J. Zbl1028.35076MR1976078
- [6] Arisawa M., Lions P.-L., On ergodic stochastic control, Comm. Partial Differential Equations23 (11–12) (1998) 2187-2217. Zbl1126.93434MR1662180
- [7] Bardi M., Da Lio F., On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math.73 (4) (1999) 276-285. Zbl0939.35038MR1710100
- [8] Barles G., Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations154 (1999) 191-224. Zbl0924.35051MR1685618
- [9] Barles G., Perthame B., Exit time problems in optimal control and the vanishing viscosity method, SIAM J. Control Optim.26 (1988) 1133-1148. Zbl0674.49027MR957658
- [10] Bensoussan A., Perturbation Methods in Optimal Control, Series in Modern Applied Mathematics, Wiley, Gauthier-Villars, 1988. Zbl0648.49001MR949208
- [11] Bensoussan A., Lions J.L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- [12] Cabre X., Caffarelli L.A., Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, 43, 1995. Zbl0834.35002MR1351007
- [13] Chechkin G., Friedman A., Piatnitski A., The boundary value problems in domains with very rapidly oscillating boundary, J. Math. Anal. Appl.231 (1) (1999) 213-234. Zbl0938.35049MR1676697
- [14] Crandall M.G., Fok K., Kocan M., Swiech A., Remarks on nonlinear uniformly parabolic equations, Indiana Univ. Math. J.47 (4) (1998) 1293-1326. Zbl0933.35091MR1687138
- [15] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. AMS27 (1) (1992). Zbl0755.35015MR1118699
- [16] Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
- [17] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.XXXV (1982) 333-363. Zbl0469.35022MR649348
- [18] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear P.D. E's, Proc. Roy. Soc. Edinburgh111A (1989) 359-375. Zbl0679.35001MR1007533
- [19] Evans L.C., Periodic homogeneization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh120A (1992) 245-265. Zbl0796.35011MR1159184
- [20] Fleming W.H., Soner H.M., Controlled Markov Processes and Viscosity Solution, Springer, New York, 1993. Zbl0773.60070MR1199811
- [21] Freidlin M.I., Wentzell A.D., Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. Zbl0922.60006MR722136
- [22] Friedman A., Hu B., Liu Y., A boundary value problem for the Poisson equation with multi-scale oscillating boundary, J. Differential Equations137 (1997) 54-93. Zbl0878.35014MR1451536
- [23] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. Zbl0361.35003MR737190
- [24] Ishii H., Lions P.-L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations83 (1990) 26-78. Zbl0708.35031MR1031377
- [25] Krylov N.V., Boundary nonhomogeneous elliptic and parabolic equations, Math. USSR Izv.20 (1983) 459-492. Zbl0529.35026
- [26] Krylov N.V., Boundary nonhomogeneous elliptic and parabolic equations in a domain, Math. USSR Izv.22 (1984) 67-97. Zbl0578.35024
- [27] Lions P.-L., Neumann type boundary conditions for Hamilton–Jacobi equations, Duke J. Math.52 (1985) 793-820. Zbl0599.35025MR816386
- [28] Lions P.-L., Menaldi J.M., Sznitman A.S., Construction de processus de diffusion reflechis par penalisation du domaine, Comptes Rendus Paris292 (1981) 559-562. Zbl0468.60073MR614669
- [29] P.-L. Lions, G. Papanicolau, S.R.S. Varadhan, Homogeneizations of Hamilton–Jacobi equations, Preprint.
- [30] Lions P.-L., Sznitman A.S., Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.37 (1) (1984) 511-537. Zbl0598.60060MR745330
- [31] Lions P.-L., Trudinger N.S., Linear oblique derivative problems for the uniformly elliptic Hamilton–Jacobi–Bellman equation, Math. Z.191 (1986) 1-15. Zbl0593.35046MR812598
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.