Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions

Mariko Arisawa

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 2, page 293-332
  • ISSN: 0294-1449

How to cite

top

Arisawa, Mariko. "Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 293-332. <http://eudml.org/doc/78580>.

@article{Arisawa2003,
author = {Arisawa, Mariko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {2},
pages = {293-332},
publisher = {Elsevier},
title = {Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions},
url = {http://eudml.org/doc/78580},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Arisawa, Mariko
TI - Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 293
EP - 332
LA - eng
UR - http://eudml.org/doc/78580
ER -

References

top
  1. [1] Arisawa M., Ergodic problem for the Hamilton–Jacobi–Bellman equations I, Existence of the ergodic attractor, Ann. IHP Anal. Non Lineaire14 (1997) 415-438. Zbl0892.49015MR1464529
  2. [2] Arisawa M., Ergodic problem for the Hamilton–Jacobi equations II, Ann. IHP Anal. Non Linearire15 (1998) 1-24. Zbl0903.49018MR1614615
  3. [3] M. Arisawa, Multiscale homogenizations for first order Hamilton–Jacobi–Bellman equations, Differential and Integral Equations, to appear. MR1364034
  4. [4] M. Arisawa, Quasi-periodic homogenizations for second order Hamilton–Jacobi–Bellman equations, J. Math. Sci. Appl., to appear. Zbl1014.49018MR1842387
  5. [5] M. Arisawa, Y. Giga, Anisotropic curvature flows in a very thin domain, Hokkaido University Preprint Series in Mathematics 495 (2000), to appear in Indiana U. Math. J. Zbl1028.35076MR1976078
  6. [6] Arisawa M., Lions P.-L., On ergodic stochastic control, Comm. Partial Differential Equations23 (11–12) (1998) 2187-2217. Zbl1126.93434MR1662180
  7. [7] Bardi M., Da Lio F., On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math.73 (4) (1999) 276-285. Zbl0939.35038MR1710100
  8. [8] Barles G., Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations154 (1999) 191-224. Zbl0924.35051MR1685618
  9. [9] Barles G., Perthame B., Exit time problems in optimal control and the vanishing viscosity method, SIAM J. Control Optim.26 (1988) 1133-1148. Zbl0674.49027MR957658
  10. [10] Bensoussan A., Perturbation Methods in Optimal Control, Series in Modern Applied Mathematics, Wiley, Gauthier-Villars, 1988. Zbl0648.49001MR949208
  11. [11] Bensoussan A., Lions J.L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  12. [12] Cabre X., Caffarelli L.A., Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, 43, 1995. Zbl0834.35002MR1351007
  13. [13] Chechkin G., Friedman A., Piatnitski A., The boundary value problems in domains with very rapidly oscillating boundary, J. Math. Anal. Appl.231 (1) (1999) 213-234. Zbl0938.35049MR1676697
  14. [14] Crandall M.G., Fok K., Kocan M., Swiech A., Remarks on nonlinear uniformly parabolic equations, Indiana Univ. Math. J.47 (4) (1998) 1293-1326. Zbl0933.35091MR1687138
  15. [15] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. AMS27 (1) (1992). Zbl0755.35015MR1118699
  16. [16] Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
  17. [17] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.XXXV (1982) 333-363. Zbl0469.35022MR649348
  18. [18] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear P.D. E's, Proc. Roy. Soc. Edinburgh111A (1989) 359-375. Zbl0679.35001MR1007533
  19. [19] Evans L.C., Periodic homogeneization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh120A (1992) 245-265. Zbl0796.35011MR1159184
  20. [20] Fleming W.H., Soner H.M., Controlled Markov Processes and Viscosity Solution, Springer, New York, 1993. Zbl0773.60070MR1199811
  21. [21] Freidlin M.I., Wentzell A.D., Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. Zbl0922.60006MR722136
  22. [22] Friedman A., Hu B., Liu Y., A boundary value problem for the Poisson equation with multi-scale oscillating boundary, J. Differential Equations137 (1997) 54-93. Zbl0878.35014MR1451536
  23. [23] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. Zbl0361.35003MR737190
  24. [24] Ishii H., Lions P.-L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations83 (1990) 26-78. Zbl0708.35031MR1031377
  25. [25] Krylov N.V., Boundary nonhomogeneous elliptic and parabolic equations, Math. USSR Izv.20 (1983) 459-492. Zbl0529.35026
  26. [26] Krylov N.V., Boundary nonhomogeneous elliptic and parabolic equations in a domain, Math. USSR Izv.22 (1984) 67-97. Zbl0578.35024
  27. [27] Lions P.-L., Neumann type boundary conditions for Hamilton–Jacobi equations, Duke J. Math.52 (1985) 793-820. Zbl0599.35025MR816386
  28. [28] Lions P.-L., Menaldi J.M., Sznitman A.S., Construction de processus de diffusion reflechis par penalisation du domaine, Comptes Rendus Paris292 (1981) 559-562. Zbl0468.60073MR614669
  29. [29] P.-L. Lions, G. Papanicolau, S.R.S. Varadhan, Homogeneizations of Hamilton–Jacobi equations, Preprint. 
  30. [30] Lions P.-L., Sznitman A.S., Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.37 (1) (1984) 511-537. Zbl0598.60060MR745330
  31. [31] Lions P.-L., Trudinger N.S., Linear oblique derivative problems for the uniformly elliptic Hamilton–Jacobi–Bellman equation, Math. Z.191 (1986) 1-15. Zbl0593.35046MR812598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.