On critical exponents for the Pucci's extremal operators

Patricio L. Felmer; Alexander Quaas

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 5, page 843-865
  • ISSN: 0294-1449

How to cite

top

Felmer, Patricio L., and Quaas, Alexander. "On critical exponents for the Pucci's extremal operators." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 843-865. <http://eudml.org/doc/78599>.

@article{Felmer2003,
author = {Felmer, Patricio L., Quaas, Alexander},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical exponents; non-divergence form operator; positive radial solution; Pucci's operator},
language = {eng},
number = {5},
pages = {843-865},
publisher = {Elsevier},
title = {On critical exponents for the Pucci's extremal operators},
url = {http://eudml.org/doc/78599},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Felmer, Patricio L.
AU - Quaas, Alexander
TI - On critical exponents for the Pucci's extremal operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 843
EP - 865
LA - eng
KW - critical exponents; non-divergence form operator; positive radial solution; Pucci's operator
UR - http://eudml.org/doc/78599
ER -

References

top
  1. [1] Cabré X., Caffarelli L.A., Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995. Zbl0834.35002MR1351007
  2. [2] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
  3. [3] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.3 (3) (1991) 615-622. Zbl0768.35025MR1121147
  4. [4] Clemons C., Jones C., A geometric proof of Kwong–Mc Leod uniqueness result, SIAM J. Math. Anal.24 (1993) 436-443. Zbl0779.35040MR1205535
  5. [5] Coffman C., Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal.46 (1972) 81-95. Zbl0249.35029
  6. [6] Cutri A., Leoni F., On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse non lineaire17 (2) (2000) 219-245. Zbl0956.35035MR1753094
  7. [7] Deng Y., Cao D., Uniqueness of the positive solution for singular non-linear boundary value problems, Syst. Sci Math. Sci.6 (1993) 25-31. Zbl0789.34025MR1215914
  8. [8] Erbe L., Tang M., Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations133 (1997) 179-202. Zbl0871.34023MR1427849
  9. [9] Gidas B., Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979), Lecture Notes in Pure Appl. Math., 54, Dekker, New York, 1980, pp. 255-273. Zbl0444.35038MR577096
  10. [10] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
  11. [11] Hale J., Ordinary Differential Equation, Wiley, New York, 1969. Zbl0186.40901
  12. [12] Kajikiya R., Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations106 (1993) 238-256. Zbl0791.35039MR1251853
  13. [13] Kolodner I., The heavy rotating string – a nonlinear eigenvalue problem, Comm. Pure Appl. Math.8 (1955) 395-408. Zbl0065.17202MR71605
  14. [14] Kwong M.K., Uniqueness of positive solution of Δu−u+up=0 in RN, Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032
  15. [15] Kwong M.K., Zhang L., Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations4 (1991) 583-596. Zbl0724.34023
  16. [16] Ni W.M., Nussbaum R., Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0, Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021
  17. [17] Pohozaev S.I., Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math.5 (1965) 1408-1411. Zbl0141.30202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.