On critical exponents for the Pucci's extremal operators
Patricio L. Felmer; Alexander Quaas
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 5, page 843-865
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFelmer, Patricio L., and Quaas, Alexander. "On critical exponents for the Pucci's extremal operators." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 843-865. <http://eudml.org/doc/78599>.
@article{Felmer2003,
author = {Felmer, Patricio L., Quaas, Alexander},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical exponents; non-divergence form operator; positive radial solution; Pucci's operator},
language = {eng},
number = {5},
pages = {843-865},
publisher = {Elsevier},
title = {On critical exponents for the Pucci's extremal operators},
url = {http://eudml.org/doc/78599},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Felmer, Patricio L.
AU - Quaas, Alexander
TI - On critical exponents for the Pucci's extremal operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 843
EP - 865
LA - eng
KW - critical exponents; non-divergence form operator; positive radial solution; Pucci's operator
UR - http://eudml.org/doc/78599
ER -
References
top- [1] Cabré X., Caffarelli L.A., Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995. Zbl0834.35002MR1351007
- [2] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
- [3] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.3 (3) (1991) 615-622. Zbl0768.35025MR1121147
- [4] Clemons C., Jones C., A geometric proof of Kwong–Mc Leod uniqueness result, SIAM J. Math. Anal.24 (1993) 436-443. Zbl0779.35040MR1205535
- [5] Coffman C., Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal.46 (1972) 81-95. Zbl0249.35029
- [6] Cutri A., Leoni F., On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse non lineaire17 (2) (2000) 219-245. Zbl0956.35035MR1753094
- [7] Deng Y., Cao D., Uniqueness of the positive solution for singular non-linear boundary value problems, Syst. Sci Math. Sci.6 (1993) 25-31. Zbl0789.34025MR1215914
- [8] Erbe L., Tang M., Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations133 (1997) 179-202. Zbl0871.34023MR1427849
- [9] Gidas B., Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979), Lecture Notes in Pure Appl. Math., 54, Dekker, New York, 1980, pp. 255-273. Zbl0444.35038MR577096
- [10] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
- [11] Hale J., Ordinary Differential Equation, Wiley, New York, 1969. Zbl0186.40901
- [12] Kajikiya R., Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations106 (1993) 238-256. Zbl0791.35039MR1251853
- [13] Kolodner I., The heavy rotating string – a nonlinear eigenvalue problem, Comm. Pure Appl. Math.8 (1955) 395-408. Zbl0065.17202MR71605
- [14] Kwong M.K., Uniqueness of positive solution of Δu−u+up=0 in RN, Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032
- [15] Kwong M.K., Zhang L., Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations4 (1991) 583-596. Zbl0724.34023
- [16] Ni W.M., Nussbaum R., Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0, Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021
- [17] Pohozaev S.I., Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math.5 (1965) 1408-1411. Zbl0141.30202
Citations in EuDML Documents
top- Patricio L. Felmer, Alexander Quaas, Moxun Tang, Jianshe Yu, Monotonicity properties for ground states of the scalar field equation
- Jérôme Busca, Maria J. Esteban, Alexander Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci's operators
- Patricio Felmer, Alexander Quaas, Moxun Tang, On the complex structure of positive solutions to Matukuma-type equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.