On the local and global well-posedness theory for the KP-I equation

Carlos E. Kenig

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 6, page 827-838
  • ISSN: 0294-1449

How to cite

top

Kenig, Carlos E.. "On the local and global well-posedness theory for the KP-I equation." Annales de l'I.H.P. Analyse non linéaire 21.6 (2004): 827-838. <http://eudml.org/doc/78641>.

@article{Kenig2004,
author = {Kenig, Carlos E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {capillary-gravity waves; surface tension; local well-posedness; global well-posedness},
language = {eng},
number = {6},
pages = {827-838},
publisher = {Elsevier},
title = {On the local and global well-posedness theory for the KP-I equation},
url = {http://eudml.org/doc/78641},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Kenig, Carlos E.
TI - On the local and global well-posedness theory for the KP-I equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 6
SP - 827
EP - 838
LA - eng
KW - capillary-gravity waves; surface tension; local well-posedness; global well-posedness
UR - http://eudml.org/doc/78641
ER -

References

top
  1. [1] Bona J.L., Smith R., The initial value problem for the Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A278 (1975) 555-601. Zbl0306.35027MR385355
  2. [2] Bourgain J., On the Cauchy problem for the Kadomstev–Petviashvili equation, Geom. Funct. Anal.3 (1993) 315-341. Zbl0787.35086MR1223434
  3. [3] Coifman R., Meyer Y., Au delà des operateurs pseudodifferéntiels, Astérisque57 (1978). Zbl0483.35082MR518170
  4. [4] Colliander J., Kenig C., Staffilani G., Small solutions for the Kadomstev–Petviashvili I equation, Mosc. Math. J.1 (4) (2001) 491-520. Zbl1002.35108MR1901072
  5. [5] J. Colliander, C. Kenig, G. Staffilani, Low regularity solutions for the Kadomstev–Petviashvili I equation, Geom. Funct. Anal., submitted for publication. Zbl1039.35097MR2006556
  6. [6] J. Colliander, C. Kenig, G. Staffilani, Corrections to: On solutions for the Kadomstev–Petviashvili I equation, Mosc. Math. J., submitted for publication. Zbl1002.35108MR1901072
  7. [7] Iorio R.J., Nunes W.V.L., On equations of KP-type, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 725-743. Zbl0911.35103MR1635416
  8. [8] Journé J.L., Two problems of Calderón–Zygmund theory on product-spaces, Ann. Inst. Fourier Grenoble38 (1) (1988) 111-132. Zbl0638.47026MR949001
  9. [9] Kato T., Ponce G., Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math.41 (1988) 891-907. Zbl0671.35066MR951744
  10. [10] C. Kenig, K. Koenig, On the local well-posedness of the Benjamin–Ono and modified Benjamin–Ono equations, MRL, submitted for publication. Zbl1044.35072MR2025062
  11. [11] Kenig C., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math.46 (1993) 527-620. Zbl0808.35128MR1211741
  12. [12] Koch H., Tzvetkov N., Local well-posedness of the Benjamin–Ono equation in H s R , IMRN26 (2003) 1449-1464. Zbl1039.35106MR1976047
  13. [13] Molinet L., Saut J.-C., Tzvetkov N., Well-posedness and ill-posedness results for the Kadomstev–Petviashvili I equation, Duke Math. J.115 (2) (2002) 353-384. Zbl1033.35103MR1944575
  14. [14] Molinet L., Saut J.-C., Tzvetkov N., Global well-posedness for the KP-I equation, Math. Annalen324 (2002) 255-275. Zbl1008.35060MR1933858
  15. [15] L. Molinet, J.-C. Saut, N. Tzvetkov, Correction: Global well-posedness for the KP-I equation, Math. Annalen, submitted for publication. Zbl1055.35103
  16. [16] C. Muscalu, J. Pipher, T. Tao, C. Thiele, Bi-parameter paraproducts, preprint. MR2134868
  17. [17] Saut J.-C., Remarks on the generalized Kadomstev–Petviashvili equations, Indiana Univ. Math. J.42 (1993) 1011-1026. Zbl0814.35119MR1254130
  18. [18] Takaoka H., Time local well-posedness for the Kadomstev–Petviashvili II equation, Harmonic Anal. Nonlin. PDE1102 (1999) 1-8. Zbl0951.35520MR1747563
  19. [19] Tzvetkov N., Global low regularity solutions for Kadomstev–Petviashvili equation, Differential Integral Equations13 (2000) 1289-1320. Zbl0977.35125MR1787069
  20. [20] Takaoka H., Tzvetkov N., On the local regularity of Kadomstev–Petviashvili-II equation, IMRN8 (2001) 77-114. Zbl0977.35126MR1810481

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.