Spikes in two coupled nonlinear Schrödinger equations

Tai-Chia Lin; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 4, page 403-439
  • ISSN: 0294-1449

How to cite

top

Lin, Tai-Chia, and Wei, Juncheng. "Spikes in two coupled nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 403-439. <http://eudml.org/doc/78662>.

@article{Lin2005,
author = {Lin, Tai-Chia, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hartree-Fock theory; Fermi gas; Nehari's manifold; least-energy solution; Bose-Einstein condensates},
language = {eng},
number = {4},
pages = {403-439},
publisher = {Elsevier},
title = {Spikes in two coupled nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78662},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Lin, Tai-Chia
AU - Wei, Juncheng
TI - Spikes in two coupled nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 403
EP - 439
LA - eng
KW - Hartree-Fock theory; Fermi gas; Nehari's manifold; least-energy solution; Bose-Einstein condensates
UR - http://eudml.org/doc/78662
ER -

References

top
  1. [1] Bates P., Fusco G., Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations160 (2000) 283-356. Zbl0990.35016MR1737000
  2. [2] Bates P., Dancer E.N., Shi J., Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability, Adv. Differential Equations4 (1999) 1-69. Zbl1157.35407MR1667283
  3. [3] Conti M., Terracini S., Verzini G., Nehari's problem and competing species system, Ann. Inst. H. Poincaré19 (6) (2002) 871-888. Zbl1090.35076MR1939088
  4. [4] del Pino M., Felmer P., Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J.48 (3) (1999) 883-898. Zbl0932.35080MR1736974
  5. [5] del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.31 (1999) 63-79. Zbl0942.35058MR1742305
  6. [6] del Pino M., Felmer P., Wei J., On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations25 (2000) 155-177. Zbl0949.35054MR1737546
  7. [7] del Pino M., Felmer P., Wei J., Multiple peak solutions for some singular perturbation problems, Cal. Var. Partial Differential Equations10 (2000) 119-134. Zbl0974.35041MR1750734
  8. [8] Donley E.A., Claussen N.R., Cornish S.L., Roberts J.L., Cornell E.A., Wieman C.E., Dynamics of collapsing and exploding Bose–Einstein condensates, Nature19 (412) (2001) 295-299. 
  9. [9] Dancer E.N., Wei J., On the location of spike s of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations157 (1999) 82-101. Zbl1087.35507MR1710015
  10. [10] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
  11. [11] Estaban M.J., Lions P.L., Existence and non-existence results for semilinear problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A93 (1982) 1-14. Zbl0506.35035MR688279
  12. [12] Esry B.D., Greene C.H., Burke J.P., Bohn J.L., Hartree–Fock theory for double condensates, Phys. Rev. Lett.78 (1997) 3594-3597. 
  13. [13] Gidas B., Ni W.-M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R n , in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., vol. 7A, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
  14. [14] Gui C., Wei J., Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
  15. [15] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
  16. [16] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 249-289. Zbl0944.35020MR1743431
  17. [17] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations11 (2000) 143-175. Zbl0964.35047MR1782991
  18. [18] Gupta S., Hadzibabic Z., Zwierlein M.W., Stan C.A., Dieckmann K., Schunck C.H., van Kempen E.G.M., Verhaar B.J., Ketterle W., Radio-frequency spectroscopy of ultracold fermions, Science300 (2003) 1723-1726. 
  19. [19] Hall D.S., Matthews M.R., Ensher J.R., Wieman C.E., Cornell E.A., Dynamics of component separation in a binary mixture of Bose–Einstein condensates, Phys. Rev. Lett.81 (1998) 1539-1542. 
  20. [20] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  21. [21] Li Y.-Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations23 (1998) 487-545. Zbl0898.35004MR1620632
  22. [22] Li Y.-Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
  23. [23] Lieband E., Loss M., Analysis, American Mathematical Society, 1996. Zbl0873.26002
  24. [24] Myatt C.J., Burt E.A., Ghrist R.W., Cornell E.A., Wieman C.E., Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys. Rev. Lett.78 (1997) 586-589. 
  25. [25] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
  26. [26] Ni W.-M., Takagi I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math.41 (1991) 819-851. Zbl0754.35042MR1115095
  27. [27] Ni W.-M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
  28. [28] Ni W.-M., Wei J., On the location and profile of spike-Layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.48 (1995) 731-768. Zbl0838.35009MR1342381
  29. [29] Timmermans E., Phase separation of Bose–Einstein condensates, Phys. Rev. Lett.81 (1998) 5718-5721. 
  30. [30] Troy W., Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations42 (3) (1981) 400-413. Zbl0486.35032MR639230
  31. [31] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996) 315-333. Zbl0865.35011MR1404386
  32. [32] Wei J., On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J.50 (1998) 159-178. Zbl0918.35024MR1622042
  33. [33] Wei J., On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations13 (2000) 15-45. Zbl0970.35034MR1811947
  34. [34] Wei J., On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
  35. [35] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 459-492. Zbl0910.35049MR1632937
  36. [36] Wei J., Winter M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc.59 (1999) 585-606. Zbl0922.35025MR1709667

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.