Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three

Mohamed Ben Ayed; Khalil El Mehdi[1]; Filomena Pacella

  • [1] Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 567-589
  • ISSN: 0294-1449

How to cite

top

Ben Ayed, Mohamed, El Mehdi, Khalil, and Pacella, Filomena. "Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 567-589. <http://eudml.org/doc/78702>.

@article{BenAyed2006,
affiliation = {Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA},
author = {Ben Ayed, Mohamed, El Mehdi, Khalil, Pacella, Filomena},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up analysis; sign changing solutions; nodal domains; critical exponent},
language = {eng},
number = {4},
pages = {567-589},
publisher = {Elsevier},
title = {Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three},
url = {http://eudml.org/doc/78702},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Ben Ayed, Mohamed
AU - El Mehdi, Khalil
AU - Pacella, Filomena
TI - Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 567
EP - 589
LA - eng
KW - blow-up analysis; sign changing solutions; nodal domains; critical exponent
UR - http://eudml.org/doc/78702
ER -

References

top
  1. [1] Adimurthi, Yadava S.L., An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Rational Mech. Anal.127 (1994) 219-229. Zbl0806.35031MR1288602
  2. [2] Atkinson F.V., Brezis H., Peletier L.A., Solutions d'équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris, Sér. I306 (1988) 711-714. Zbl0696.35059MR944417
  3. [3] Atkinson F.V., Brezis H., Peletier L.A., Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations85 (1990) 151-170. Zbl0702.35099MR1052332
  4. [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989. Zbl0676.58021MR1019828
  5. [5] Ben Ayed M., El Mehdi K., Hammami M., A nonexistence result for Yamabe type problems on thin annuli, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 715-744. Zbl1130.35335MR1922475
  6. [6] Brezis H., Some variational problems with lack of compactness, Proc. Sympos. Pure Math.45 (1986) 165-201. Zbl0617.35041MR843559
  7. [7] Brezis H., Kato T., Remarks on the Schroedinger operator with singular complex potential, J. Math. Pures Appl.58 (1979) 137-151. Zbl0408.35025MR539217
  8. [8] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
  9. [9] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  10. [10] Clapp M., Weth T., Multiple solutions for the Brezis–Nirenberg problem, Adv. Differential Equations10 (2005) 463-480. Zbl1284.35151MR2122698
  11. [11] Druet O., Elliptic equations with critical Sobolev exponent in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 125-142. Zbl1011.35060MR1902741
  12. [12] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
  13. [13] Li Y.Y., Prescribing scalar curvature on S n and related topics, Part I, J. Differential Equations120 (1995) 319-410. Zbl0827.53039MR1347349
  14. [14] Rey O., The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  15. [15] Schoen R., Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in: Topics in Calculus of Variations, Montecatini Terme, 1987, Lectures Notes in Math., vol. 1365, Springer-Verlag, Berlin, 1989, pp. 120-154. Zbl0702.49038MR994021
  16. [16] Schoen R., On the number of solutions of constant scalar curvature in a conformal class, in: Lawson H.B., Tenenblat K. (Eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, 1991, pp. 311-320. Zbl0733.53021MR1173050
  17. [17] Struwe M., Variational Methods: Applications to Nonlinear PDE & Hamiltonian Systems, Springer-Verlag, Berlin, 1990. Zbl0746.49010MR1078018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.