On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid

Jaime Ortega; Lionel Rosier; Takéo Takahashi

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 139-165
  • ISSN: 0294-1449

How to cite

top

Ortega, Jaime, Rosier, Lionel, and Takahashi, Takéo. "On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 139-165. <http://eudml.org/doc/78724>.

@article{Ortega2007,
author = {Ortega, Jaime, Rosier, Lionel, Takahashi, Takéo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Euler equations; fluid-rigid body interaction; exterior domain; classical solutions},
language = {eng},
number = {1},
pages = {139-165},
publisher = {Elsevier},
title = {On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid},
url = {http://eudml.org/doc/78724},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Ortega, Jaime
AU - Rosier, Lionel
AU - Takahashi, Takéo
TI - On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 139
EP - 165
LA - eng
KW - Euler equations; fluid-rigid body interaction; exterior domain; classical solutions
UR - http://eudml.org/doc/78724
ER -

References

top
  1. [1] Amrouche C., Girault V., Giroire J., Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl. (9)76 (1) (1997) 55-81. Zbl0878.35029MR1429997
  2. [2] Conca C., San Martín J.H., Tucsnak M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations25 (5–6) (2000) 1019-1042. Zbl0954.35135
  3. [3] Coron J.-M., On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9)75 (2) (1996) 155-188. Zbl0848.76013MR1380673
  4. [4] Coron J.-M., On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim.37 (6) (1999) 1874-1896, (electronic). Zbl0954.76010MR1720143
  5. [5] Desjardins B., Esteban M.J., Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal.146 (1) (1999) 59-71. Zbl0943.35063MR1682663
  6. [6] Desjardins B., Esteban M.J., On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations25 (7–8) (2000) 1399-1413. Zbl0953.35118
  7. [7] Feireisl E., On the motion of rigid bodies in a viscous fluid, Appl. Math.47 (6) (2002) 463-484. Zbl1090.35137MR1948192
  8. [8] Feireisl E., On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal.167 (4) (2003) 281-308. Zbl1090.76061MR1981859
  9. [9] Galdi G.P., On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal.148 (1) (1999) 53-88. Zbl0957.76012MR1715453
  10. [10] Galdi G.P., Silvestre A.L., Strong solutions to the problem of motion of a rigid body in a Navier–Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. Zbl1046.35084
  11. [11] G.P. Galdi, A.L. Silvestre, Strong solutions to the Navier–Stokes equations around a rotating obstacle, Arch. Rational Mech. Anal., July 2004, in press. Zbl1081.35076
  12. [12] Galdi G.P., Silvestre A.L., Strong solutions to the problem of motion of a rigid body in a Navier–Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. Zbl1046.35084
  13. [13] Germain P., Muller P., Introduction à la mécanique des milieux continus, Masson, Paris, 1980. Zbl0465.73001MR576236
  14. [14] Glass O., Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var.5 (2000) 1-44, (electronic). Zbl0940.93012MR1745685
  15. [15] Grandmont C., Maday Y., Existence for an unsteady fluid–structure interaction problem, Math. Model. Numer. Anal. (M2AN)34 (3) (2000) 609-636. Zbl0969.76017
  16. [16] Gunzburger M.D., Lee H.-C., Seregin G.A., Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech.2 (3) (2000) 219-266. Zbl0970.35096MR1781915
  17. [17] Hartman P., Ordinary Differential Equations, second ed., Birkhäuser, Boston, MA, 1982. MR658490
  18. [18] Hishida T., An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal.150 (1999) 307-348. Zbl0949.35106
  19. [19] Hoffmann K.-H., Starovoitov V.N., On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl.9 (2) (1999) 633-648. Zbl0966.76016MR1725677
  20. [20] Hoffmann K.-H., Starovoitov V.N., Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math.5 (2000) 15-21, (electronic). Zbl0936.35125MR1739269
  21. [21] Judakov N.V., The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy255 (1974) 249-253, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami). MR464811
  22. [22] Kato T., On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal.25 (1967) 188-200. Zbl0166.45302MR211057
  23. [23] Kikuchi K., Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math.30 (1) (1983) 63-92. Zbl0517.76024MR700596
  24. [24] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, New York, 1972, (Translated from the French by P. Kenneth). Zbl0223.35039MR350177
  25. [25] Lions P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Sci. Publ. Zbl0866.76002MR1422251
  26. [26] Munnier A., Zuazua E., Large time behavior for a simplified N-dimensional model of fluid–solid interaction, Comm. Partial Differential Equations30 (1–3) (2005) 377-417. Zbl1080.35088
  27. [27] Ortega J.H., Rosier L., Takahashi T., Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, ESAIM: M2AN39 (1) (2005) 79-108. Zbl1087.35081MR2136201
  28. [28] San Martín J.H., Starovoitov V., Tucsnak M., Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal.161 (2) (2002) 113-147. Zbl1018.76012MR1870954
  29. [29] Serre D., Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math.4 (1) (1987) 99-110. Zbl0655.76022MR899206
  30. [30] Silvestre A.L., On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech.4 (4) (2002) 285-326. Zbl1022.35041MR1953783
  31. [31] Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (4)146 (1987) 65-96. Zbl0629.46031MR916688
  32. [32] Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993, (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III). Zbl0821.42001MR1232192
  33. [33] Takahashi T., Analysis of strong solutions for the equations modeling the motion of a rigid–fluid system in a bounded domain, Adv. Differential Equations8 (12) (2003) 1499-1532. Zbl1101.35356
  34. [34] Takahashi T., Tucsnak M., Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech.6 (1) (2004) 53-77. Zbl1054.35061MR2027754
  35. [35] Temam R., Problèmes mathématiques en plasticité, Gauthier-Villars, Montrouge, 1983. Zbl0547.73026MR711964
  36. [36] Temam R., Navier–Stokes Equations, Theory and Numerical Analysis, third ed., North-Holland Publishing Co., Amsterdam, 1984, (With an appendix by F. Thomasset). Zbl0568.35002
  37. [37] Vázquez J.L., Zuazua E., Large time behavior for a simplified 1D model of fluid–solid interaction, Comm. Partial Differential Equations28 (9–10) (2003) 1705-1738. Zbl1071.74017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.