Traveling waves with paraboloid like interfaces for balanced bistable dynamics

Xinfu Chen; Jong-Shenq Guo; François Hamel; Hirokazu Ninomiya; Jean-Michel Roquejoffre

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 369-393
  • ISSN: 0294-1449

How to cite

top

Chen, Xinfu, et al. "Traveling waves with paraboloid like interfaces for balanced bistable dynamics." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 369-393. <http://eudml.org/doc/78740>.

@article{Chen2007,
author = {Chen, Xinfu, Guo, Jong-Shenq, Hamel, François, Ninomiya, Hirokazu, Roquejoffre, Jean-Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {interface; level set},
language = {eng},
number = {3},
pages = {369-393},
publisher = {Elsevier},
title = {Traveling waves with paraboloid like interfaces for balanced bistable dynamics},
url = {http://eudml.org/doc/78740},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Chen, Xinfu
AU - Guo, Jong-Shenq
AU - Hamel, François
AU - Ninomiya, Hirokazu
AU - Roquejoffre, Jean-Michel
TI - Traveling waves with paraboloid like interfaces for balanced bistable dynamics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 369
EP - 393
LA - eng
KW - interface; level set
UR - http://eudml.org/doc/78740
ER -

References

top
  1. [1] Alberti G., Ambrosio L., Cabré X., On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math.65 (2001) 9-33. Zbl1121.35312MR1843784
  2. [2] Allen S., Cahn J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall.27 (1979) 1084-1095. 
  3. [3] Ambrosio L., Cabré X., Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi, J. Amer. Math. Soc.13 (2000) 725-739. Zbl0968.35041MR1775735
  4. [4] Aronson D.G., Weinberger H.F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math.30 (1978) 33-76. Zbl0407.92014MR511740
  5. [5] Berestycki H., Caffarelli L., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math.50 (1997) 1089-1111. Zbl0906.35035MR1470317
  6. [6] Berestycki H., Hamel F., Monneau R., One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J.103 (2000) 375-396. Zbl0954.35056MR1763653
  7. [7] H. Berestycki, B. Larrouturou, Planar travelling front solutions of reaction–diffusion problems, preprint. Zbl0612.76079
  8. [8] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal.31 (1999) 80-118. Zbl0942.35072MR1742304
  9. [9] Caffarelli L.A., Cabré X., Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, Amer. Math. Soc., 1995. Zbl0834.35002MR1351007
  10. [10] Carr J., Pego R.L., Invariant manifolds for metastable patterns in u t = ϵ 2 u x x - f u , Proc. Roy. Soc. Edinburgh Sect. A116 (1990) 133-160. Zbl0738.35023MR1076358
  11. [11] Chen X., Generation and propagation of interfaces for reaction–diffusion equations, J. Differential Equations96 (1992) 116-141. Zbl0765.35024
  12. [12] Chen X., Spectrum for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interfaces, Comm. Partial Differential Equations19 (1994) 1371-1395. Zbl0811.35098
  13. [13] Chen X., Generation, propagation, and annihilation of metastable patterns, J. Differential Equations206 (2004) 399-437. Zbl1061.35014MR2095820
  14. [14] X. Chen, J.-S. Guo, H. Ninomiya, Entire solutions of reaction–diffusion equations with balanced bistable nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, in press. Zbl1123.35024
  15. [15] Chen X., Taniguchi M., Instability of spherical interfaces in a nonlinear free boundary problem, Adv. Differential Equations5 (2000) 747-772. Zbl1012.35081MR1750117
  16. [16] De Giorgi E., Convergence problems for functionals and operators, in: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, 1979, pp. 131-188. Zbl0405.49001MR533166
  17. [17] De Mottoni P., Schatzman M., Development of interfaces in R N , Proc. Roy. Soc. Edinburgh Sect. A116 (1990) 207-220. Zbl0725.35009MR1084732
  18. [18] Ei S.-I., The motion of weakly interaction pulses in reaction–diffusion systems, J. Dynamics Differential Equations14 (2002) 85-137. Zbl1007.35039
  19. [19] Evans L.C., Soner H.M., Souganidis P.E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45 (1992) 1097-1123. Zbl0801.35045MR1177477
  20. [20] Fife P.C., Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 53, 1988. Zbl0684.35001MR981594
  21. [21] Fife P.C., McLeod J.B., The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal.65 (1977) 335-361. Zbl0361.35035MR442480
  22. [22] Fusco G., A geometric approach to the dynamics of u t = ϵ 2 u x x + f u for smallε, in: Kirchgassner (Ed.), Lecture Notes in Physics, vol. 359, 1990, pp. 53-73. Zbl0715.35038
  23. [23] Fusco G., Hale J.K., Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynamics Differential Equations1 (1989) 75-94. Zbl0684.34055MR1010961
  24. [24] Ghoussoub N., Gui C., On a conjecture of De Giorgi and some related problems, Math. Ann.311 (1998) 481-491. Zbl0918.35046MR1637919
  25. [25] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1997. Zbl0562.35001
  26. [26] Hamel F., Monneau R., Solutions of semilinear elliptic equations in R N with conical-shaped level sets, Comm. Partial Differential Equations25 (2000) 769-819. Zbl0952.35041MR1759793
  27. [27] Hamel F., Monneau R., Existence and uniqueness for a free boundary problem arising in combustion theory, Interfaces Free Boundaries4 (2002) 167-210. Zbl1078.80004MR1950528
  28. [28] Hamel F., Monneau R., Roquejoffre J.-M., Stability of traveling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup.37 (2004) 469-506. Zbl1085.35075MR2060484
  29. [29] Hamel F., Monneau R., Roquejoffre J.-M., Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems13 (2005) 1069-1096. Zbl1097.35078MR2166719
  30. [30] Hamel F., Monneau R., Roquejoffre J.-M., Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems14 (2006) 75-92. Zbl1194.35151MR2170314
  31. [31] Hamel F., Nadirashvili N., Travelling waves and entire solutions of the Fisher-KPP equation in R N , Arch. Rational Mech. Anal.157 (2001) 91-163. Zbl0987.35072MR1830037
  32. [32] Haragus M., Scheel A., Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 283-329. Zbl1098.35085MR2217654
  33. [33] Ilmanen T., Convergence of the Allen–Cahn equation to Brakke's motion, J. Differential Geom.38 (1993) 417-461. Zbl0784.53035
  34. [34] Ninomiya H., Taniguchi M., Traveling curved fronts of a mean curvature flow with constant driving force, in: Free Boundary Problems: Theory and Applications, I, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 13, 2000, pp. 206-221. Zbl0957.35124MR1793036
  35. [35] Ninomiya H., Taniguchi M., Stability of traveling curved fronts in a curvature flow with driving force, Methods Appl. Anal.8 (2001) 429-450. Zbl1007.35004MR1904754
  36. [36] Ninomiya H., Taniguchi M., Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations213 (2005) 204-233. Zbl1159.35378
  37. [37] H. Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen–Cahn equations, Disc. Cont. Dyn. Systems, submitted for publication. Zbl1118.35012
  38. [38] Ouyang T., Shi J., Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations146 (1998) 121-156. Zbl0918.35049MR1625731
  39. [39] O. Savin, Phase transitions: regularity of flat level sets, preprint. Zbl1180.35499
  40. [40] Soner H.M., Motion of a set by the curvature of its boundary, J. Differential Equations101 (1993) 313-372. Zbl0769.35070MR1204331

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.