Wellposedness and stability results for the Navier-Stokes equations in 𝐑 3

Jean-Yves Chemin; Isabelle Gallagher

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 599-624
  • ISSN: 0294-1449

How to cite

top

Chemin, Jean-Yves, and Gallagher, Isabelle. "Wellposedness and stability results for the Navier-Stokes equations in $\mathbf {R}^3$." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 599-624. <http://eudml.org/doc/78857>.

@article{Chemin2009,
author = {Chemin, Jean-Yves, Gallagher, Isabelle},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; global wellposedness; stability},
language = {eng},
number = {2},
pages = {599-624},
publisher = {Elsevier},
title = {Wellposedness and stability results for the Navier-Stokes equations in $\mathbf \{R\}^3$},
url = {http://eudml.org/doc/78857},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Chemin, Jean-Yves
AU - Gallagher, Isabelle
TI - Wellposedness and stability results for the Navier-Stokes equations in $\mathbf {R}^3$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 599
EP - 624
LA - eng
KW - Navier-Stokes equations; global wellposedness; stability
UR - http://eudml.org/doc/78857
ER -

References

top
  1. [1] Auscher P., Dubois S., Tchamitchian P., On the stability of global solutions to Navier–Stokes equations in the space, Journal de Mathématiaques Pures et Appliquées83 (2004) 673-697. Zbl1107.35096MR2062638
  2. [2] Bahouri H., Chemin J.-Y., Gallagher I., Refined Hardy inequalities, Annali di Scuola Normale di Pisa, Classe di Scienze, Serie V5 (2006) 375-391. Zbl1121.43006MR2274784
  3. [3] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics121 (1999) 131-175. Zbl0919.35089MR1705001
  4. [4] M. Cannone, Y. Meyer, F. Planchon, Solutions autosimilaires des équations de Navier–Stokes, Séminaire “Équations aux Dérivées Partielles” de l'École polytechnique, Exposé VIII, 1993–1994. Zbl0882.35090MR1300903
  5. [5] Chemin J.-Y., Fluides parfaits incompressibles, Astérisque, vol. 230, 1995, English translation: J.-Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, 1998. Zbl0829.76003MR1340046
  6. [6] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, Journal d'Analyse Mathématique77 (1999) 27-50. Zbl0938.35125MR1753481
  7. [7] J.-Y. Chemin, Localization in Fourier space and Navier–Stokes system, in: Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale di Pisa, pp. 53–136. Zbl1081.35074MR2144406
  8. [8] Chemin J.-Y., Gallagher I., On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Annales Scientifiques de l'École Normale Supérieure de Paris39 (4) (2006) 679-698. Zbl1124.35052MR2290141
  9. [9] Foias C., Saut J.-C., Asymptotic behaviour, as t , of solutions of the Navier–Stokes equations and nonlinear spectral manifolds, Indiana Mathematical Journal33 (3) (1984) 459-477. Zbl0565.35087MR740960
  10. [10] Fujita H., Kato T., On the Navier–Stokes initial value problem I, Archive for Rational Mechanics and Analysis16 (1964) 269-315. Zbl0126.42301MR166499
  11. [11] Gallagher I., The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness and life span, International Mathematical Research Notices18 (1997) 919-935. Zbl0893.35098MR1481611
  12. [12] Gallagher I., Profile decomposition for the Navier–Stokes equations, Bulletin de la Société Mathématique de France129 (2001) 285-316. Zbl0987.35120MR1871299
  13. [13] Gallagher I., Iftimie D., Planchon F., Asymptotics and stability for global solutions to the Navier–Stokes equations, Annales de l'Institut Fourier53 (5) (2003) 1387-1424. Zbl1038.35054MR2032938
  14. [14] Gérard P., Description du défaut de compacité de l'injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations3 (1998) 213-233. Zbl0907.46027MR1632171
  15. [15] Giga Y., Miyakawa T., Solutions in L r of the Navier–Stokes initial value problem, Archive for Rational Mechanics and Analysis89 (3) (1985) 267-281. Zbl0587.35078MR786550
  16. [16] Iftimie D., The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations, Bulletin de la Société Mathématique de France127 (1999) 473-517. Zbl0946.35059MR1765551
  17. [17] Kato T., Strong L p solutions of the Navier–Stokes equations in R m with applications to weak solutions, Mathematische Zeitschrift187 (1984) 471-480. Zbl0545.35073MR760047
  18. [18] Koch H., Tataru D., Well-posedness for the Navier–Stokes equations, Advances in Mathematics157 (2001) 22-35. Zbl0972.35084MR1808843
  19. [19] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, vol. 2, Second English edition, revised and enlarged, Gordon and Breach, Science Publishers, New York–London–Paris, 1969, xviii+224 pp. Zbl0184.52603MR254401
  20. [20] Leibovich S., Mahalov A., Titi E., Invariant helical subspaces for the Navier–Stokes equations, Archive for Rational Mechanics and Analysis112 (3) (1990) 193-222. Zbl0708.76044MR1076072
  21. [21] Lemarié-Rieusset P.-G., Recent Developments in the Navier–Stokes Problem, Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, 2002. Zbl1034.35093MR1938147
  22. [22] Leray J., Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Matematica63 (1933) 193-248. Zbl59.0763.02MR124922JFM60.0726.05
  23. [23] Ponce G., Racke R., Sideris T., Titi E., Global stability of large solutions to the 3D Navier–Stokes equations, Communitacions in Mathematical Physics159 (1994). Zbl0795.35082MR1256992
  24. [24] Ukhovskii M., Iudovich V., Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikladnaya Matematika i Mekhanika32 (1968) 59-69, (in Russian); translated as, Journal of Applied Mathematics and Mechanics32 (1968) 52-61. Zbl0172.53405MR239293

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.