Wellposedness and stability results for the Navier-Stokes equations in
Jean-Yves Chemin; Isabelle Gallagher
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 599-624
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChemin, Jean-Yves, and Gallagher, Isabelle. "Wellposedness and stability results for the Navier-Stokes equations in $\mathbf {R}^3$." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 599-624. <http://eudml.org/doc/78857>.
@article{Chemin2009,
author = {Chemin, Jean-Yves, Gallagher, Isabelle},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; global wellposedness; stability},
language = {eng},
number = {2},
pages = {599-624},
publisher = {Elsevier},
title = {Wellposedness and stability results for the Navier-Stokes equations in $\mathbf \{R\}^3$},
url = {http://eudml.org/doc/78857},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Chemin, Jean-Yves
AU - Gallagher, Isabelle
TI - Wellposedness and stability results for the Navier-Stokes equations in $\mathbf {R}^3$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 599
EP - 624
LA - eng
KW - Navier-Stokes equations; global wellposedness; stability
UR - http://eudml.org/doc/78857
ER -
References
top- [1] Auscher P., Dubois S., Tchamitchian P., On the stability of global solutions to Navier–Stokes equations in the space, Journal de Mathématiaques Pures et Appliquées83 (2004) 673-697. Zbl1107.35096MR2062638
- [2] Bahouri H., Chemin J.-Y., Gallagher I., Refined Hardy inequalities, Annali di Scuola Normale di Pisa, Classe di Scienze, Serie V5 (2006) 375-391. Zbl1121.43006MR2274784
- [3] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics121 (1999) 131-175. Zbl0919.35089MR1705001
- [4] M. Cannone, Y. Meyer, F. Planchon, Solutions autosimilaires des équations de Navier–Stokes, Séminaire “Équations aux Dérivées Partielles” de l'École polytechnique, Exposé VIII, 1993–1994. Zbl0882.35090MR1300903
- [5] Chemin J.-Y., Fluides parfaits incompressibles, Astérisque, vol. 230, 1995, English translation: J.-Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, 1998. Zbl0829.76003MR1340046
- [6] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, Journal d'Analyse Mathématique77 (1999) 27-50. Zbl0938.35125MR1753481
- [7] J.-Y. Chemin, Localization in Fourier space and Navier–Stokes system, in: Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale di Pisa, pp. 53–136. Zbl1081.35074MR2144406
- [8] Chemin J.-Y., Gallagher I., On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Annales Scientifiques de l'École Normale Supérieure de Paris39 (4) (2006) 679-698. Zbl1124.35052MR2290141
- [9] Foias C., Saut J.-C., Asymptotic behaviour, as , of solutions of the Navier–Stokes equations and nonlinear spectral manifolds, Indiana Mathematical Journal33 (3) (1984) 459-477. Zbl0565.35087MR740960
- [10] Fujita H., Kato T., On the Navier–Stokes initial value problem I, Archive for Rational Mechanics and Analysis16 (1964) 269-315. Zbl0126.42301MR166499
- [11] Gallagher I., The tridimensional Navier–Stokes equations with almost bidimensional data: stability, uniqueness and life span, International Mathematical Research Notices18 (1997) 919-935. Zbl0893.35098MR1481611
- [12] Gallagher I., Profile decomposition for the Navier–Stokes equations, Bulletin de la Société Mathématique de France129 (2001) 285-316. Zbl0987.35120MR1871299
- [13] Gallagher I., Iftimie D., Planchon F., Asymptotics and stability for global solutions to the Navier–Stokes equations, Annales de l'Institut Fourier53 (5) (2003) 1387-1424. Zbl1038.35054MR2032938
- [14] Gérard P., Description du défaut de compacité de l'injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations3 (1998) 213-233. Zbl0907.46027MR1632171
- [15] Giga Y., Miyakawa T., Solutions in of the Navier–Stokes initial value problem, Archive for Rational Mechanics and Analysis89 (3) (1985) 267-281. Zbl0587.35078MR786550
- [16] Iftimie D., The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations, Bulletin de la Société Mathématique de France127 (1999) 473-517. Zbl0946.35059MR1765551
- [17] Kato T., Strong solutions of the Navier–Stokes equations in with applications to weak solutions, Mathematische Zeitschrift187 (1984) 471-480. Zbl0545.35073MR760047
- [18] Koch H., Tataru D., Well-posedness for the Navier–Stokes equations, Advances in Mathematics157 (2001) 22-35. Zbl0972.35084MR1808843
- [19] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, vol. 2, Second English edition, revised and enlarged, Gordon and Breach, Science Publishers, New York–London–Paris, 1969, xviii+224 pp. Zbl0184.52603MR254401
- [20] Leibovich S., Mahalov A., Titi E., Invariant helical subspaces for the Navier–Stokes equations, Archive for Rational Mechanics and Analysis112 (3) (1990) 193-222. Zbl0708.76044MR1076072
- [21] Lemarié-Rieusset P.-G., Recent Developments in the Navier–Stokes Problem, Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, 2002. Zbl1034.35093MR1938147
- [22] Leray J., Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Matematica63 (1933) 193-248. Zbl59.0763.02MR124922JFM60.0726.05
- [23] Ponce G., Racke R., Sideris T., Titi E., Global stability of large solutions to the 3D Navier–Stokes equations, Communitacions in Mathematical Physics159 (1994). Zbl0795.35082MR1256992
- [24] Ukhovskii M., Iudovich V., Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikladnaya Matematika i Mekhanika32 (1968) 59-69, (in Russian); translated as, Journal of Applied Mathematics and Mechanics32 (1968) 52-61. Zbl0172.53405MR239293
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.