Two solvable systems of coagulation equations with limited aggregations

Jean Bertoin

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2073-2089
  • ISSN: 0294-1449

How to cite

top

Bertoin, Jean. "Two solvable systems of coagulation equations with limited aggregations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2073-2089. <http://eudml.org/doc/78925>.

@article{Bertoin2009,
author = {Bertoin, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {coagulation equations; generating function; quasi-linear PDE; Lagrange inversion formula; gelation},
language = {eng},
number = {6},
pages = {2073-2089},
publisher = {Elsevier},
title = {Two solvable systems of coagulation equations with limited aggregations},
url = {http://eudml.org/doc/78925},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bertoin, Jean
TI - Two solvable systems of coagulation equations with limited aggregations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2073
EP - 2089
LA - eng
KW - coagulation equations; generating function; quasi-linear PDE; Lagrange inversion formula; gelation
UR - http://eudml.org/doc/78925
ER -

References

top
  1. [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
  2. [2] Bertoin J., Sidoravicius V., The structure of typical clusters in large sparse random configurations, available at, http://hal.archives-ouvertes.fr/ccsd-00339779/en/. Zbl1168.82028
  3. [3] Bertoin J., Sidoravicius V., Vares M.E., A system of grabbing particles related to Galton–Watson trees, Preprint available at, http://fr.arXiv.org/abs/0804.0726. Zbl1209.60048
  4. [4] Billingsley P., Probability and Measure, third ed., John Wiley & Sons, New York, 1995. Zbl0822.60002MR1324786
  5. [5] Deaconu M., Tanré E., Smoluchovski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Normale Sup. PisaXXIX (2000) 549-580. Zbl1072.60071MR1817709
  6. [6] Drake R.L., A general mathematical survey of the coagulation equation, in: Hidy G.M., Brock J.R. (Eds.), Topics in Current Aerosol Research, Part 2, International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 201-376. 
  7. [7] Dubovski P.B., Mathematical Theory of Coagulation, Seoul National University, Seoul, 1994. Zbl0880.35124MR1290321
  8. [8] Dwass M., The total progeny in a branching process and a related random walk, J. Appl. Probab.6 (1969) 682-686. Zbl0192.54401MR253433
  9. [9] Escobedo M., Mischler S., Dust and self-similarity for the Smoluchowski coagulation equation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 331-362. Zbl1154.82024MR2217655
  10. [10] Fournier N., Laurençot Ph., Existence of self-similar solutions to Smoluchowski's coagulation equation, Comm. Math. Phys.256 (2005) 589-609. Zbl1084.82006MR2161272
  11. [11] Golovin A.M., The solution of the coagulation equation for cloud droplets in a rising air current, Izv. Geophys. Ser.5 (1963) 482-487. 
  12. [12] Jeon I., Existence of gelling solutions for coagulation–fragmentation equations, Comm. Math. Phys.194 (1998) 541-567. Zbl0910.60083MR1631473
  13. [13] Laurençot Ph., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modeling and Computational Methods for Kinetic Equations, Birkhäuser, 2004, pp. 321-356. Zbl1105.82027MR2068589
  14. [14] McLeod J.B., On an infinite set of nonlinear differential equations, Quart. J. Math. Oxford13 (1962) 119-128. Zbl0109.31501MR139822
  15. [15] Menon G., Pego R.L., Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math.57 (2004) 1197-1232. Zbl1049.35048MR2059679
  16. [16] Norris J.R., Cluster coagulation, Comm. Math. Phys.209 (2000) 407-435. Zbl0953.60095MR1737990
  17. [17] von Smoluchowski M., Drei Vortrage über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z.17 (1916) 557-571, and 585–599. 
  18. [18] Spouge J.L., Solutions and critical times for the monodisperse coagulation equation when a ( x , y ) = A + B ( x + y ) + C x y , J. Phys. A: Math. Gen.16 (1983) 767-773. Zbl0525.92030MR706194
  19. [19] Spouge J.L., A branching-process solution of the polydisperse coagulation equation, Adv. Appl. Probab.16 (1984) 56-69. Zbl0528.60083MR732130
  20. [20] Trubnikov B., Solution of the coagulation equation in the case of a bilinear coefficient of adhesion of particles, Soviet Phys. Dokl.16 (1971) 124-125. 
  21. [21] van Dongen P.G.J., Ernst M.H., Size distribution in the polymerization model A f R B g , J. Phys. A: Math. Gen.17 (1984) 2281-2297. MR754321
  22. [22] van Dongen P.G.J., Ernst M.H., On the occurrence of a gelation transition in Smoluchowski's coagulation equation, J. Statist. Phys.44 (1986) 785-792. MR858257
  23. [23] Wilf H.S., Generatingfunctionology, Academic Press, 1994, Also available via, http://www.math.upenn.edu/~wilf/gfology2.pdf. Zbl0831.05001MR1277813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.