Two solvable systems of coagulation equations with limited aggregations
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2073-2089
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBertoin, Jean. "Two solvable systems of coagulation equations with limited aggregations." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2073-2089. <http://eudml.org/doc/78925>.
@article{Bertoin2009,
author = {Bertoin, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {coagulation equations; generating function; quasi-linear PDE; Lagrange inversion formula; gelation},
language = {eng},
number = {6},
pages = {2073-2089},
publisher = {Elsevier},
title = {Two solvable systems of coagulation equations with limited aggregations},
url = {http://eudml.org/doc/78925},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Bertoin, Jean
TI - Two solvable systems of coagulation equations with limited aggregations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2073
EP - 2089
LA - eng
KW - coagulation equations; generating function; quasi-linear PDE; Lagrange inversion formula; gelation
UR - http://eudml.org/doc/78925
ER -
References
top- [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
- [2] Bertoin J., Sidoravicius V., The structure of typical clusters in large sparse random configurations, available at, http://hal.archives-ouvertes.fr/ccsd-00339779/en/. Zbl1168.82028
- [3] Bertoin J., Sidoravicius V., Vares M.E., A system of grabbing particles related to Galton–Watson trees, Preprint available at, http://fr.arXiv.org/abs/0804.0726. Zbl1209.60048
- [4] Billingsley P., Probability and Measure, third ed., John Wiley & Sons, New York, 1995. Zbl0822.60002MR1324786
- [5] Deaconu M., Tanré E., Smoluchovski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Normale Sup. PisaXXIX (2000) 549-580. Zbl1072.60071MR1817709
- [6] Drake R.L., A general mathematical survey of the coagulation equation, in: Hidy G.M., Brock J.R. (Eds.), Topics in Current Aerosol Research, Part 2, International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 201-376.
- [7] Dubovski P.B., Mathematical Theory of Coagulation, Seoul National University, Seoul, 1994. Zbl0880.35124MR1290321
- [8] Dwass M., The total progeny in a branching process and a related random walk, J. Appl. Probab.6 (1969) 682-686. Zbl0192.54401MR253433
- [9] Escobedo M., Mischler S., Dust and self-similarity for the Smoluchowski coagulation equation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 331-362. Zbl1154.82024MR2217655
- [10] Fournier N., Laurençot Ph., Existence of self-similar solutions to Smoluchowski's coagulation equation, Comm. Math. Phys.256 (2005) 589-609. Zbl1084.82006MR2161272
- [11] Golovin A.M., The solution of the coagulation equation for cloud droplets in a rising air current, Izv. Geophys. Ser.5 (1963) 482-487.
- [12] Jeon I., Existence of gelling solutions for coagulation–fragmentation equations, Comm. Math. Phys.194 (1998) 541-567. Zbl0910.60083MR1631473
- [13] Laurençot Ph., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modeling and Computational Methods for Kinetic Equations, Birkhäuser, 2004, pp. 321-356. Zbl1105.82027MR2068589
- [14] McLeod J.B., On an infinite set of nonlinear differential equations, Quart. J. Math. Oxford13 (1962) 119-128. Zbl0109.31501MR139822
- [15] Menon G., Pego R.L., Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math.57 (2004) 1197-1232. Zbl1049.35048MR2059679
- [16] Norris J.R., Cluster coagulation, Comm. Math. Phys.209 (2000) 407-435. Zbl0953.60095MR1737990
- [17] von Smoluchowski M., Drei Vortrage über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z.17 (1916) 557-571, and 585–599.
- [18] Spouge J.L., Solutions and critical times for the monodisperse coagulation equation when , J. Phys. A: Math. Gen.16 (1983) 767-773. Zbl0525.92030MR706194
- [19] Spouge J.L., A branching-process solution of the polydisperse coagulation equation, Adv. Appl. Probab.16 (1984) 56-69. Zbl0528.60083MR732130
- [20] Trubnikov B., Solution of the coagulation equation in the case of a bilinear coefficient of adhesion of particles, Soviet Phys. Dokl.16 (1971) 124-125.
- [21] van Dongen P.G.J., Ernst M.H., Size distribution in the polymerization model , J. Phys. A: Math. Gen.17 (1984) 2281-2297. MR754321
- [22] van Dongen P.G.J., Ernst M.H., On the occurrence of a gelation transition in Smoluchowski's coagulation equation, J. Statist. Phys.44 (1986) 785-792. MR858257
- [23] Wilf H.S., Generatingfunctionology, Academic Press, 1994, Also available via, http://www.math.upenn.edu/~wilf/gfology2.pdf. Zbl0831.05001MR1277813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.