Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II : regularity of bending moments

A. Demyanov

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2137-2163
  • ISSN: 0294-1449

How to cite

top

Demyanov, A.. "Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II : regularity of bending moments." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2137-2163. <http://eudml.org/doc/78928>.

@article{Demyanov2009,
author = {Demyanov, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasistatic evolution; rate independent processes; elasto-plastic plates; regularity of solutions},
language = {eng},
number = {6},
pages = {2137-2163},
publisher = {Elsevier},
title = {Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II : regularity of bending moments},
url = {http://eudml.org/doc/78928},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Demyanov, A.
TI - Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II : regularity of bending moments
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2137
EP - 2163
LA - eng
KW - quasistatic evolution; rate independent processes; elasto-plastic plates; regularity of solutions
UR - http://eudml.org/doc/78928
ER -

References

top
  1. [1] Anzellotti G., On the extremal stress and displacement in Hencky plasticity, Duke Math. J.51 (1984) 133-147. Zbl0548.73022MR744291
  2. [2] Bensoussan A., Frehse J., Asymptotic behaviour of the time-dependent Norton–Hoff law in plasticity theory and H 1 regularity, Comment. Math. Univ. Carolinae37 (2) (1996) 285-304. Zbl0851.35079MR1399003
  3. [3] Dal Maso G., Demyanov A., DeSimone A., Quasistatic evolution problems for pressure-sensitive plastic materials, Milan J. Math.75 (2007) 117-134. Zbl1225.74016MR2371540
  4. [4] Dal Maso G., DeSimone A., Mora M.G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal.180 (2) (2006) 237-291. Zbl1093.74007MR2210910
  5. [5] Demengel F., Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Ration. Mech. Anal.105 (1989) 123-161. Zbl0669.73030MR968458
  6. [6] Demyanov A., Regularity of solutions in Prandtl–Reuss perfect plasticity, Calc. Var34 (2009) 23-72. Zbl1149.74014MR2448309
  7. [7] Demyanov A., Quasistatic evolution in the theory of perfectly elasto-plastic plates. Part I: existence of a weak solution, Math. Models Meth. Appl. Sci.19 (2) (2009) 229-256. Zbl1160.74031MR2498434
  8. [8] Fuchs M., Seregin G.A., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Springer-Verlag, Berlin, 2000. Zbl0964.76003MR1810507
  9. [9] Knees D., Global regularity of the elastic fields of a power-law model on Lipschitz domains, Math. Meth. Appl. Sci29 (2006) 1363-1391. Zbl1191.74015MR2247307
  10. [10] Mazya V., Sobolev Spaces, Springer-Verlag, 1985. Zbl0692.46023
  11. [11] Mielke A., Analysis of energetic models for rate-independent materials, in: Beijing, 2002, Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 817-828. Zbl1018.74007MR1957582
  12. [12] Murat F., Trombetti C., A chain rule formula for the composition of a vector-valued function by a piecewise smooth function, Boll. Un. Mat. Ital. Sez. B6 (3) (2003) 581-595. Zbl1179.46037MR2014820
  13. [13] Seregin G.A., Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory, J. Math. Sci.93 (5) (1999) 779-783. Zbl0954.74508MR1699125
  14. [14] Seregin G.A., Two-dimensional variational problems in plasticity theory, Izv. Math.60 (1) (1996) 179-216. Zbl0881.73039MR1391123
  15. [15] Seregin G.A., On regularity of minimizers of certain variational problems in plasticity theory, St. Petersburg Math. J.4 (1993) 1257-1272. Zbl0838.73029MR1202731
  16. [16] Seregin G.A., Diferentiability properties of weak solutions of certain variational problems in the theory of perfect elastoplastic plates, Appl. Math. Optim.28 (1993) 307-335. Zbl0779.73086MR1227426
  17. [17] Seregin G.A., On differentiability properties of the stress-tensor in the Coulomb–Mohr theory of plasticity, St. Petersburg Math. J.4 (6) (1993) 1257-1272. Zbl0838.73029MR1199642
  18. [18] Seregin G.A., Differential properties of solution of evolution variational inequalities in the theory of plasticity, J. Math. Sci72 (6) (1994) 3449-3458. MR1317379
  19. [19] Seregin G.A., Differentiability of local extremals of variational problems in the mechanics of perfect elastoplastic media, Differ. Uravn.23 (11) (1987) 1981-1991, (in Russian). English translation:, Differential Equations23 (1987) 1349-1358. Zbl0655.73017MR928247
  20. [20] G.A. Seregin, Private communications. 
  21. [21] Temam R., Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985, Translation of, Problèmes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. MR711964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.