Cohomology of line bundles on G / B

Lakshmi Bai; C. Musili; C. S. Seshadri

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 1, page 89-137
  • ISSN: 0012-9593

How to cite

top

Bai, Lakshmi, Musili, C., and Seshadri, C. S.. "Cohomology of line bundles on $G/B$." Annales scientifiques de l'École Normale Supérieure 7.1 (1974): 89-137. <http://eudml.org/doc/81932>.

@article{Bai1974,
author = {Bai, Lakshmi, Musili, C., Seshadri, C. S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {89-137},
publisher = {Elsevier},
title = {Cohomology of line bundles on $G/B$},
url = {http://eudml.org/doc/81932},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Bai, Lakshmi
AU - Musili, C.
AU - Seshadri, C. S.
TI - Cohomology of line bundles on $G/B$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 1
SP - 89
EP - 137
LA - eng
UR - http://eudml.org/doc/81932
ER -

References

top
  1. [1] A. BOREL, Linear Algebraic Groups, W. A. Benjamin, New York, 1969. Zbl0186.33201MR40 #4273
  2. [2] A. BOREL, Introduction aux groupes arithmétiques, Publications de l'Institut Mathématique de l'Université de Strasbourg, vol. 15, Hermann, Paris, 1969. Zbl0186.33202MR39 #5577
  3. [3] A. BOREL et J. TITS, Groupes réductifs (Publ. Math. I. H. E. S., vol. 27, 1965, p. 55-150). Zbl0145.17402MR34 #7527
  4. [4] A. BOREL et J. TITS, Compléments à l'article "Groups réductifs" (Publ. Math. I. H. E. S., vol. 41, 1972, p. 253-276). Zbl0254.14018MR47 #3556
  5. [5] R. BOTT, Homogeneous vector bundles (Ann. of Math., series (2), vol. 66, 1957, p. 203-248). Zbl0094.35701MR19,681d
  6. [6] N. BOURBAKI, Groupes et algèbres de Lie, chapitres 4, 5 et 6, Hermann, Paris, 1968. Zbl0186.33001
  7. [7] C. C. CHEVALLEY, Classification de groupes de Lie algébriques (Séminaire, 1956-1958, Secrétariat mathématique, 11, rue Pierre-Curie, Paris, 1958). Zbl0092.26301
  8. [8] C. C. CHEVALLEY, Sur les décompositions cellulaires des espaces G/B (manuscrit non publié), Circa, 1958. 
  9. [9] M. DEMAZURE, The case of the group G2, Appendix to "Adeles and Algebraic Groups" (Lectures by ANDRÉ WEIL, The Institute for Advanced Study, Princeton, New Jersey, 1961). 
  10. [10] M. DEMAZURE, Une démonstration algébrique d'un théorème de Bott (Inventiones Math., vol. 5, 1968, p. 349-356). Zbl0204.54102MR37 #4831
  11. [11] M. DEMAZURE, Sur la formule des caractères de H. Weyl (Inventiones Math., vol. 9, 1970, p. 249-252). Zbl0189.21403MR44 #5321
  12. [12] M. DEMAZURE, Désingularisation des variétés de Schubert généralisées (Ann. Sc. Éc. Norm. Sup., t. 7, 1974, p. 53-88). Zbl0312.14009MR50 #7174
  13. [13] M. DEMAZURE et A. GROTHENDIECK, Schémas en Groupes III (SGA 3), Lecture Notes in Mathematics, n° 153, Springer-Verlag, 1970. Zbl0212.52810MR43 #223a
  14. [14] M. HOCHSTER, Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay (J. Algebra, vol. 25, 1973, p. 40-57). Zbl0256.14024MR47 #3383
  15. [15] J.-I. IGUSA, On certain representations of semi-simple algebraic groups and the arithmatic of the corresponding invariants (1) (Inventiones Math., vol. 12, 1971, p. 62-94). Zbl0206.23902MR45 #6823
  16. [16] G. KEMPF, Schubert methods with an application to algebraic curves (Stichting mathematisch centrum, Amsterdam, 1971). Zbl0223.14018
  17. [17] B. KOSTANT, Lie algebra cohomology and the generalised Borel-Weil theorem (Ann. of Math., vol. 74, 1961, p. 329-387). Zbl0134.03501MR26 #265
  18. [18] D. LAKSOV, The arithmetic Cohen-Macaulay character of Schubert schemes (Acta Mathematica, vol. 129, 1972, p. 1-9). Zbl0233.14012
  19. [19] D. MUMFORD, Abelian Varieties, Oxford University Press, Bombay, 1970. Zbl0223.14022MR44 #219
  20. [20] C. MUSILI, Postulation formula for Schubert varieties (J. Indian Math. Soc., vol. 36, 1972, p. 143-171). Zbl0277.14021MR48 #8515
  21. [21] J.-P. SERRE, Algèbres de Lie semi-simples complexes, W. A. Benjamin, New York, 1966. Zbl0144.02105MR35 #6721
  22. [22] C. S. SESHADRI, Quotient spaces modulo reductive groups (Ann. of Math., vol. 95, 1972, p. 511-556). Zbl0241.14024MR46 #9044
  23. [23] R. STEINBERG, Lectures on Chevalley groups, Lecture Notes in Mathematics, Yale University, New Haven, Conn., 1967. 
  24. [24] J. TITS, Classification of semi-simple algebraic groups, Proceeding Symposia in Pure Math., vol. 9, 1966, p. 33-62. Zbl0238.20052MR37 #309
  25. [25] Groupes algébriques linéaires, Exposé 5 (Séminaire Heidelberg, Strasbourg, 1965-1966, Publication I. R. M. A., Strasbourg, n° 2, 1967). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.