Sur la cohomologie réelle des groupes de Lie simples réels

A. Guichardet; D. Wigner

Annales scientifiques de l'École Normale Supérieure (1978)

  • Volume: 11, Issue: 2, page 277-292
  • ISSN: 0012-9593

How to cite

top

Guichardet, A., and Wigner, D.. "Sur la cohomologie réelle des groupes de Lie simples réels." Annales scientifiques de l'École Normale Supérieure 11.2 (1978): 277-292. <http://eudml.org/doc/82016>.

@article{Guichardet1978,
author = {Guichardet, A., Wigner, D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Simple Connected Lie Group; Cocycle},
language = {fre},
number = {2},
pages = {277-292},
publisher = {Elsevier},
title = {Sur la cohomologie réelle des groupes de Lie simples réels},
url = {http://eudml.org/doc/82016},
volume = {11},
year = {1978},
}

TY - JOUR
AU - Guichardet, A.
AU - Wigner, D.
TI - Sur la cohomologie réelle des groupes de Lie simples réels
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1978
PB - Elsevier
VL - 11
IS - 2
SP - 277
EP - 292
LA - fre
KW - Simple Connected Lie Group; Cocycle
UR - http://eudml.org/doc/82016
ER -

References

top
  1. [1] D. WIGNER, Algebraic Cohomology of Topological Groups (Trans. Amer. Math. Soc., t. 178, 1973, p. 83-93). Zbl0264.22001MR49 #2898
  2. [2] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press. Zbl0111.18101
  3. [3] W. T. VAN EST, Group Cohomology and Lie Algebra Cohomology in Lie Groups, I, II (Nederl. Akad. Wetensch. Proc. Series A 56 = Indag. Math., t. 15, 1953, p. 484-504). Zbl0051.26001MR15,505b
  4. [4] G. P. HOCHSCHILD and G. D. MOSTOW, Cohomology of Lie Groups (Illinois J. Math., t. 6, 1962, p. 367-401). Zbl0111.03302MR26 #5092
  5. [5] T. ASAI, The Reciprocity of Dedekind Sums and the Factor Set for the Universal Covering Group of SL (2, R) (Nagoya Math. J., t. 37, 1970, p. 67-80). Zbl0192.39601MR41 #5299
  6. [6] J. L. DUPONT, Curvature and Characteristic Classes [Lecture Notes in Math., (t. 640, 1978)]. Zbl0373.57009MR58 #18477
  7. [7] J. L. KOSZUL, Homologie et cohomologie des algèbres de Lie (Bull. Soc. Math. France, t. 78, 1950, p. 65-127). Zbl0039.02901MR12,120g
  8. [8] R. A. RANKIN, Modular Forms and Functions, Cambridge Univ. Press, 1977. Zbl0376.10020MR58 #16518
  9. [9] A. BOREL and F. HIRZEBRUCH, Characteristic Classes and Homogeneous Spaces, I (Amer. J. Math., t. 80, 1958, p. 458-538). Zbl0097.36401MR21 #1586
  10. [10] I. SATAKE, Livre en préparation sur les espaces symétriques. 
  11. [11] W. T. VAN EST, On Algebraic Cohomology Concepts in Lie Group, I, II (Nederl. Akad. Wetensch. Proc. Series A 58, 1955, p. 225-233 et 286-294). Zbl0067.26202MR17,61b
  12. [12] W. T. VAN EST, A Generalization of the Cartan-Leray Spectral Sequence, I, II (Ibid., 61, 1958, p. 399-406 et 407-413). Zbl0084.39202MR21 #2236
  13. [13] C. C. MOORE, Group Extensions and Cohomology for Locally Compact Groups, III, IV (Trans. Amer. Math. Soc., t. 221, 1976, p. 1-33 et 35-58). Zbl0366.22005MR54 #2867
  14. [14] H. SHULMAN and P. TISCHLER, Leaf Invariants for Foliations and the Van Est Isomorphism (J. Diff. Geom., t. 11, 1976, p. 535-546). Zbl0361.57022MR56 #9549
  15. [15] J.-L. DUPONT, Simplicial de Rham Cohomology and Characteristic Classes of Flat Bundles (Topology, t. 15, 1976, p. 233-245). Zbl0331.55012MR54 #1243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.