Energy estimates and Liouville theorems for harmonic maps
Annales scientifiques de l'École Normale Supérieure (1990)
- Volume: 23, Issue: 4, page 563-592
- ISSN: 0012-9593
Access Full Article
topHow to cite
topTakegoshi, Kenshô. "Energy estimates and Liouville theorems for harmonic maps." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 563-592. <http://eudml.org/doc/82282>.
@article{Takegoshi1990,
author = {Takegoshi, Kenshô},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {energy of harmonic maps; holomorphic maps of Kähler manifolds; Liouville theorems; plurisubharmonic functions; volume growth},
language = {eng},
number = {4},
pages = {563-592},
publisher = {Elsevier},
title = {Energy estimates and Liouville theorems for harmonic maps},
url = {http://eudml.org/doc/82282},
volume = {23},
year = {1990},
}
TY - JOUR
AU - Takegoshi, Kenshô
TI - Energy estimates and Liouville theorems for harmonic maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 563
EP - 592
LA - eng
KW - energy of harmonic maps; holomorphic maps of Kähler manifolds; Liouville theorems; plurisubharmonic functions; volume growth
UR - http://eudml.org/doc/82282
ER -
References
top- [1] E. BEDFORD, B. A. TAYLOR, Two applications of a non-linear integral formula to analytic functions (Indiana Univ. Math. J., Vol. 29, 1980, pp. 463-465). Zbl0444.32009MR81e:32020
- [2] S. Y. CHENG, Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proc. Sym. Pure Math., Vol. 36, 1980, pp. 147-151). Zbl0455.58009MR81i:58021
- [3] S. Y. CHENG, S. T. YAU, Differential equations on Riemannian manifolds and their geometric applications (Comm. Oure Appl. Math., Vol. 28, 1975, pp. 333-354). Zbl0312.53031MR52 #6608
- [4] H. DONNELLY, Bounded harmonic functions and positive Ricci curvature (Math. Z., Vol. 191, 1986, pp. 559-565). Zbl0604.30051MR87e:58204
- [5] H. DONNELLY, C. FEFFERMAN, L² cohomology and index theorem for the Gergman metric (Ann. Math., Vol. 118, 1983, pp. 593-618). Zbl0532.58027MR85f:32029
- [6] H. DONNELLY, F. XAVIER, On the differential form spectrum of negatively curved Riemannian manifolds (Am. J. Math., Vol. 106, 1984, pp. 169-185). Zbl0547.58034MR85i:58115
- [7] J. EELLS, L. LEMAIRE, A report on harmonic maps (Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68). Zbl0401.58003MR82b:58033
- [8] R. E. GREENE, H. WU, Integral of subharmonic functions on manifolds of non-negative curvature (Invent. Math., Vol. 27, 1974, pp. 265-298). Zbl0342.31003MR52 #3605
- [9] R. E. GREENE, H. WU, Function theory on manifolds which possesses a pole (Lect. Notes Math., Vol. 699, 1979, Springer Verlag). Zbl0414.53043MR81a:53002
- [10] W. K. HAYMAN, Meromorphic functions, Clarendon Press, Oxford, 1964. Zbl0115.06203MR29 #1337
- [11] S. HILDEBRANDT, Liouville theorems for harmonic mappings and application to Bernstein theorems, Seminor on differential geometry (Ann. Math. Studies, Vol. 102, 1982, pp. 107-131). Zbl0478.53030MR84a:58029
- [12] H. KANEKO, A stochastic approach to Liouville property for plurisubharmonic functions (J. Math. Soc., Vol. 41, 1989, pp. 291-299). Zbl0681.32015MR90b:32032
- [13] L. KARP, Subharmonic functions on real and complex manifolds (Math. Z., vol. 179, 1982, pp. 534-554). Zbl0441.31005MR84d:53042
- [14] A. KASUE, On Riemannian manifolds admitting certain strictly convex function (Osaka J. Math., Vol. 18, 1981, pp. 577-582). Zbl0475.53039MR83b:53043
- [15] A. KASUE, K. SUGAWARA, Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms (Osaka J. Math., Vol. 24, 1987, pp. 679-704). Zbl0642.53058MR89a:53072
- [16] P. LI and L. F. TAM, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set (Ann. Math., Vol. 125, 1987, pp. 171-207). Zbl0622.58001MR88m:58039
- [17] N. MOK, Y. T. SIU and S. T. YAU, The Poincaré-Lelong equation on complete Kähler manifolds (Comp. Math., Vol. 44, 1981, pp. 183-218). Zbl0531.32007MR84g:32011
- [18] J. MOSER, On Harnack's theorem for elliptic differential equations (Comm. Pure Appl. Math., Vol. 14, 1961, pp. 577-591). Zbl0111.09302MR28 #2356
- [19] P. PRICE, A monotonicity formula for Yang-Mills firleds (Manuscripta Math., Vol. 43, 1983, pp. 131-166). Zbl0521.58024MR84m:58033
- [20] J. H. SAMPSON, Some properties and applications of harmonic mappings (Ann. Scient. Éc. Norm. Sup., Vol. 11, 1978, pp. 211-228). Zbl0392.31009MR80b:58031
- [21] B. V. SCHABAT, Distribution of values of holomorphic mappings, Translation of Mathematical Monographs (Am. Math. Soc., Vol. 61, 1985). Zbl0564.32016
- [22] N. SIBONY and P. M. WONG, Some remarks on the Casorati-Weierstrass theorem (Ann. Polonici Math., Vol. 39, 1981, pp. 165-174). Zbl0476.32005MR82k:32015
- [23] Y. T. SIU, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds (Ann. Math., Vol. 112, 1980, pp. 73-111). Zbl0517.53058MR81j:53061
- [24] Y. T. SIU, Complex analyticity of harmonic maps, vanishing and Lefschetz theorems (J. Diff. Geometry, Vol. 17, 1982, pp. 55-138). Zbl0497.32025MR83j:58039
- [25] Y. T. SIU, S. T. YAU, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay (Ann. Math., Vol. 105, 1977, pp. 225-264). Zbl0358.32006MR55 #10719
- [26] W. STOLL, The growth of area of a transcendental analytic set I, II (Math. Ann., Vol. 156, 1964, pp. 47-78 ; pp. 144-170). Zbl0126.09502MR29 #3670
- [27] W. STOLL, Value distribution on parabolic spaces (Lect. Notes Math., Vol. 600, 1977, Springer Verlag). Zbl0367.32001MR58 #28692
- [28] K. TAKEGOSHI, A non-existence theorem for pluriharmonic maps of finite energy (Math. Z., Vol. 192, 1986, pp. 21-27). Zbl0619.58018MR87j:58031
- [29] A. VITTER, On the curvature of complex hypersurfaces (Indiana Univ. Math. J., Vol. 23, 1974, pp. 813-826). Zbl0277.53014MR49 #11445
- [30] H. WU, On a problem concerning the intrinsic characterization of ℂn (Math. Ann., Vol. 246, 1979, pp. 15-22). Zbl0406.53050MR81a:32008
- [31] H. WU, The Bochner technique in differential geometry, Mathematical Report Series, Harwoord Academic Press, 1987.
- [32] S. T. YAU, Harmonic functions on complete Riemannian manifolds (Comm. Pure Appl. Math., Vol. 28, 1975, pp. 201-228). Zbl0291.31002MR55 #4042
- [33] S. T. YAU, A general Schwarz lemma for Kähler Manifolds (Am. J. Math., Vol. 100, 1978, pp. 197-204). Zbl0424.53040MR58 #6370
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.