Energy estimates and Liouville theorems for harmonic maps

Kenshô Takegoshi

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 4, page 563-592
  • ISSN: 0012-9593

How to cite

top

Takegoshi, Kenshô. "Energy estimates and Liouville theorems for harmonic maps." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 563-592. <http://eudml.org/doc/82282>.

@article{Takegoshi1990,
author = {Takegoshi, Kenshô},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {energy of harmonic maps; holomorphic maps of Kähler manifolds; Liouville theorems; plurisubharmonic functions; volume growth},
language = {eng},
number = {4},
pages = {563-592},
publisher = {Elsevier},
title = {Energy estimates and Liouville theorems for harmonic maps},
url = {http://eudml.org/doc/82282},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Takegoshi, Kenshô
TI - Energy estimates and Liouville theorems for harmonic maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 563
EP - 592
LA - eng
KW - energy of harmonic maps; holomorphic maps of Kähler manifolds; Liouville theorems; plurisubharmonic functions; volume growth
UR - http://eudml.org/doc/82282
ER -

References

top
  1. [1] E. BEDFORD, B. A. TAYLOR, Two applications of a non-linear integral formula to analytic functions (Indiana Univ. Math. J., Vol. 29, 1980, pp. 463-465). Zbl0444.32009MR81e:32020
  2. [2] S. Y. CHENG, Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proc. Sym. Pure Math., Vol. 36, 1980, pp. 147-151). Zbl0455.58009MR81i:58021
  3. [3] S. Y. CHENG, S. T. YAU, Differential equations on Riemannian manifolds and their geometric applications (Comm. Oure Appl. Math., Vol. 28, 1975, pp. 333-354). Zbl0312.53031MR52 #6608
  4. [4] H. DONNELLY, Bounded harmonic functions and positive Ricci curvature (Math. Z., Vol. 191, 1986, pp. 559-565). Zbl0604.30051MR87e:58204
  5. [5] H. DONNELLY, C. FEFFERMAN, L² cohomology and index theorem for the Gergman metric (Ann. Math., Vol. 118, 1983, pp. 593-618). Zbl0532.58027MR85f:32029
  6. [6] H. DONNELLY, F. XAVIER, On the differential form spectrum of negatively curved Riemannian manifolds (Am. J. Math., Vol. 106, 1984, pp. 169-185). Zbl0547.58034MR85i:58115
  7. [7] J. EELLS, L. LEMAIRE, A report on harmonic maps (Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68). Zbl0401.58003MR82b:58033
  8. [8] R. E. GREENE, H. WU, Integral of subharmonic functions on manifolds of non-negative curvature (Invent. Math., Vol. 27, 1974, pp. 265-298). Zbl0342.31003MR52 #3605
  9. [9] R. E. GREENE, H. WU, Function theory on manifolds which possesses a pole (Lect. Notes Math., Vol. 699, 1979, Springer Verlag). Zbl0414.53043MR81a:53002
  10. [10] W. K. HAYMAN, Meromorphic functions, Clarendon Press, Oxford, 1964. Zbl0115.06203MR29 #1337
  11. [11] S. HILDEBRANDT, Liouville theorems for harmonic mappings and application to Bernstein theorems, Seminor on differential geometry (Ann. Math. Studies, Vol. 102, 1982, pp. 107-131). Zbl0478.53030MR84a:58029
  12. [12] H. KANEKO, A stochastic approach to Liouville property for plurisubharmonic functions (J. Math. Soc., Vol. 41, 1989, pp. 291-299). Zbl0681.32015MR90b:32032
  13. [13] L. KARP, Subharmonic functions on real and complex manifolds (Math. Z., vol. 179, 1982, pp. 534-554). Zbl0441.31005MR84d:53042
  14. [14] A. KASUE, On Riemannian manifolds admitting certain strictly convex function (Osaka J. Math., Vol. 18, 1981, pp. 577-582). Zbl0475.53039MR83b:53043
  15. [15] A. KASUE, K. SUGAWARA, Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms (Osaka J. Math., Vol. 24, 1987, pp. 679-704). Zbl0642.53058MR89a:53072
  16. [16] P. LI and L. F. TAM, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set (Ann. Math., Vol. 125, 1987, pp. 171-207). Zbl0622.58001MR88m:58039
  17. [17] N. MOK, Y. T. SIU and S. T. YAU, The Poincaré-Lelong equation on complete Kähler manifolds (Comp. Math., Vol. 44, 1981, pp. 183-218). Zbl0531.32007MR84g:32011
  18. [18] J. MOSER, On Harnack's theorem for elliptic differential equations (Comm. Pure Appl. Math., Vol. 14, 1961, pp. 577-591). Zbl0111.09302MR28 #2356
  19. [19] P. PRICE, A monotonicity formula for Yang-Mills firleds (Manuscripta Math., Vol. 43, 1983, pp. 131-166). Zbl0521.58024MR84m:58033
  20. [20] J. H. SAMPSON, Some properties and applications of harmonic mappings (Ann. Scient. Éc. Norm. Sup., Vol. 11, 1978, pp. 211-228). Zbl0392.31009MR80b:58031
  21. [21] B. V. SCHABAT, Distribution of values of holomorphic mappings, Translation of Mathematical Monographs (Am. Math. Soc., Vol. 61, 1985). Zbl0564.32016
  22. [22] N. SIBONY and P. M. WONG, Some remarks on the Casorati-Weierstrass theorem (Ann. Polonici Math., Vol. 39, 1981, pp. 165-174). Zbl0476.32005MR82k:32015
  23. [23] Y. T. SIU, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds (Ann. Math., Vol. 112, 1980, pp. 73-111). Zbl0517.53058MR81j:53061
  24. [24] Y. T. SIU, Complex analyticity of harmonic maps, vanishing and Lefschetz theorems (J. Diff. Geometry, Vol. 17, 1982, pp. 55-138). Zbl0497.32025MR83j:58039
  25. [25] Y. T. SIU, S. T. YAU, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay (Ann. Math., Vol. 105, 1977, pp. 225-264). Zbl0358.32006MR55 #10719
  26. [26] W. STOLL, The growth of area of a transcendental analytic set I, II (Math. Ann., Vol. 156, 1964, pp. 47-78 ; pp. 144-170). Zbl0126.09502MR29 #3670
  27. [27] W. STOLL, Value distribution on parabolic spaces (Lect. Notes Math., Vol. 600, 1977, Springer Verlag). Zbl0367.32001MR58 #28692
  28. [28] K. TAKEGOSHI, A non-existence theorem for pluriharmonic maps of finite energy (Math. Z., Vol. 192, 1986, pp. 21-27). Zbl0619.58018MR87j:58031
  29. [29] A. VITTER, On the curvature of complex hypersurfaces (Indiana Univ. Math. J., Vol. 23, 1974, pp. 813-826). Zbl0277.53014MR49 #11445
  30. [30] H. WU, On a problem concerning the intrinsic characterization of ℂn (Math. Ann., Vol. 246, 1979, pp. 15-22). Zbl0406.53050MR81a:32008
  31. [31] H. WU, The Bochner technique in differential geometry, Mathematical Report Series, Harwoord Academic Press, 1987. 
  32. [32] S. T. YAU, Harmonic functions on complete Riemannian manifolds (Comm. Pure Appl. Math., Vol. 28, 1975, pp. 201-228). Zbl0291.31002MR55 #4042
  33. [33] S. T. YAU, A general Schwarz lemma for Kähler Manifolds (Am. J. Math., Vol. 100, 1978, pp. 197-204). Zbl0424.53040MR58 #6370

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.