Potential theory and Lefschetz theorems for arithmetic surfaces

J.-B. Bost

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 2, page 241-312
  • ISSN: 0012-9593

How to cite

top

Bost, J.-B.. "Potential theory and Lefschetz theorems for arithmetic surfaces." Annales scientifiques de l'École Normale Supérieure 32.2 (1999): 241-312. <http://eudml.org/doc/82489>.

@article{Bost1999,
author = {Bost, J.-B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {effective divisor; fundamental group; Arakelov divisor; Arakelov geometry; Arakelov intersection theory; arithmetic surfaces; Green functions},
language = {eng},
number = {2},
pages = {241-312},
publisher = {Elsevier},
title = {Potential theory and Lefschetz theorems for arithmetic surfaces},
url = {http://eudml.org/doc/82489},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Bost, J.-B.
TI - Potential theory and Lefschetz theorems for arithmetic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 2
SP - 241
EP - 312
LA - eng
KW - effective divisor; fundamental group; Arakelov divisor; Arakelov geometry; Arakelov intersection theory; arithmetic surfaces; Green functions
UR - http://eudml.org/doc/82489
ER -

References

top
  1. [B-De] A. BEURLING and J. DENY, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., Vol. 45, 1959, pp. 208-215. Zbl0089.08201MR21 #5098
  2. [B] E. BOMBIERI, Canonical models of surfaces of general type, Publ. Math. IHES, Vol. 42, 1973, pp. 171-219. Zbl0259.14005MR47 #6710
  3. [B-G-S] J.-B. BOST, H. GILLET and C. SOULÉ, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc., Vol. 7, 1994, pp. 903-1027. Zbl0973.14013MR95j:14025
  4. [Br] M. BRELOT, Etude et extensions du principe de Dirichlet, Ann. Inst. Fourier Grenoble, Vol. 5, 1953-1954, pp. 371-419. Zbl0067.33002MR17,603f
  5. [C] T. CHINBURG, Capacity theory on varieties, Compositio Math., Vol. 80, 1991, pp. 75-84. Zbl0761.11028MR93d:14039
  6. [Ch] G. CHOQUET, Capacitabilité en potentiel logarithmique, Acad. Roy. Belg. Bull. Cl. Sci., (5), Vol. 44, 1958, pp. 321-326. Zbl0082.31501MR21 #778
  7. [C-C] R. COLEMAN and W. MCCALLUM, Stable reduction of Fermat curves and local components of Jacobi sum Hecke characters, J. reine angew. Math., Vol. 385, 1988, pp. 41-101. Zbl0654.12003MR89h:11026
  8. [D1] P. DELIGNE, Intersection sur les surfaces régulières, Exposé in SGA 7 II, Groupe de Monodromie en Géometrie Algébrique, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin, 1973. Zbl0258.00005MR50 #7135
  9. [D2] P. DELIGNE, Preuve des conjectures de Tate et de Shafarevitch (d'après G. Faltings), in Séminaire Bourbaki 1983/1984, Exposé n° 616, Astérisque, Vol. 121-122, 1985, pp. 25-41. Zbl0591.14026MR87c:11026
  10. [D3] P. DELIGNE, Le déterminant de la cohomologie, Contemporary Mathematics, Vol. 67, 1987, pp. 93-178. Zbl0629.14008MR89b:32038
  11. [De1] J. DENY, Les potentiels d'énergie finie, Acta Math., Vol. 82, 1950, pp. 107-183. Zbl0034.36201MR12,98e
  12. [De2] J. DENY, Méthodes hilbertiennes en théorie du potentiel, in Potential Theory (C.I.M.E., I Ciclo, Stresa, 1969), pp. 121-201. Edizioni Cremonese, Rome 1970. Zbl0212.13401
  13. [De-L] J. DENY and J.L. LIONS, Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Vol. 5, 1953-1954, pp. 305-370 (1955). Zbl0065.09903MR17,646a
  14. [Do] J.L. DOOB, Potential theory and its probabilistic counterpart, Springer Verlag, New York, Heidelberg, Berlin, 1984. Zbl0549.31001MR85k:31001
  15. [Fa] G. FALTINGS, Calculus on arithmetic surfaces, Ann. of Math., Vol. 119, 1984, pp. 387-424. Zbl0559.14005MR86e:14009
  16. [F1] A. FRANCHETTA, Sulle curve reducibili appartenenti ad una superficie algebrica, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl., (5), Vol. 8, 1949, pp. 378-398. Zbl0039.16304MR11,739h
  17. [F2] A. FRANCHETTA, Sul sistema aggiunto ad una curva riducibile, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Mat. Nat., (8), Vol. 6, 1949, pp. 685-687. Zbl0035.22401MR11,740a
  18. [Fu] W. FULTON, On the topology of algebraic varieties, Proc. of Symposia in Pure Mathematics, Vol. 46, Part 1, 1987, pp. 15-46. Zbl0703.14012MR89c:14027
  19. [Ga] C. GASBARRI, Le théorème d'annulation de Serre sur les variétés arithmétiques, J. of Algebraic Geometry, Vol. 5, 1996, pp. 571-581. Zbl0895.14008MR97c:14023
  20. [G-S1] H. GILLET and C. SOULÉ, Arithmetic intersection theory, Publ. Math. I.H.E.S., Vol. 72, 1990, pp. 93-174. Zbl0741.14012MR92d:14016
  21. [G-S2] H. GILLET and C. SOULÉ, Arithmetic analogs of the standard conjectures, in Motives (Seattle 1991, U. Jannsen, S. Kleiman, J.-P. Serre ed.), Proc. Symp. Pure Math., Vol. 55, Part 1, 1994, pp. 129-140. Zbl0820.14007MR95j:14026
  22. [Gr1] A. GROTHENDIECK, Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0234.14002MR50 #7129
  23. [Gr2] A. GROTHENDIECK, Théorèmes de Lefschetz locaux et globaux (SGA2), North Holland Publ. Co., Amsterdam, 1968. MR57 #16294
  24. [H] D. HARBATER, Galois covers of an arithmetic surface, Amer. J. of Math., Vol. 110, 1988, pp. 849-885. Zbl0683.14004MR90e:14013
  25. [Ha] R. HARTSHORNE, Algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1977. Zbl0367.14001MR57 #3116
  26. [H-M] H. HIRONAKA and H. MATSUMURA, Formal functions and formal embeddings, J. Math. Soc. Japan, Vol. 20, 1968, pp. 52-67. Zbl0157.27701MR40 #4274
  27. [Hr] D. HRILJAC, Heights and Arakelov intersection theory, Ann. J. of Math., Vol. 107, 1985, pp. 23-38. Zbl0593.14004MR86c:14024
  28. [I] Y. IHARA, Horizontal divisors on arithmetic surfaces associated with Belyĭ uniformizations, in The Grothendieck theory of dessins d'enfants (Luminy 1993, L. Schneips ed.), pp. 245-254, London Math. Soc. Lecture Note Series, Vol. 200, Cambridge University Press, Cambridge, 1994. Zbl0854.14004
  29. [L] S. LEFSCHETZ, L'analysis situs et la géométrie algébrique, Paris, Gauthier-Villars, 1924. JFM50.0663.01
  30. [LM] R. LEVIN-MÉNÉGAUX, Un théorème d'annulation en caractéristique positive, in Séminaire sur les faisceaux de courbe de genre au moins deux (L. Szpiro ed.), Astérisque, Vol. 86, 1981, pp. 35-43. Zbl0524.14022
  31. [MB1] L. MORET-BAILLY, Groupes de Picard et problèmes de Skolem I, Ann. Sc. Ecole Normale Supérieure, Vol. 22, 1989, pp. 161-179. Zbl0704.14014MR90i:11065
  32. [MB2] L. MORET-BAILLY, Métriques permises, Astérisque, Vol. 127, 1985, pp. 29-87. MR801918
  33. [M] D. MUMFORD, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. IHES, Vol. 9, 1961, pp. 5-22. Zbl0108.16801MR27 #3643
  34. [R] C.P. RAMANUJAM, Remarks on the Kodaira vanishing theorem, J. Indian Math. Society, Vol. 36, 1972, pp. 41-51. Zbl0276.32018MR48 #8502
  35. [Ra] T. RANSFORD, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. Zbl0828.31001MR96e:31001
  36. [Ray] (Mme) M. RAYNAUD, Théorèmes de Lefschetz en cohomologie cohérente et en cohomologie étale, Bull. Soc. Math. France, Mémoire n° 41, 1975. Zbl0323.14007MR53 #10804
  37. [Ru1] R. RUMELY, Capacity theory on algebraic curves, Lecture Notes in Mathematics, Vol. 1378, Springer-Verlag, Berlin, 1989. Zbl0679.14012MR91b:14018
  38. [Ru2] R. RUMELY, An intersection pairing for curves, with analytic contributions from nonarchimedean places, Canadian Mathematical Society Conference Proceedings, Vol. 15, 1995, pp. 325-357. Zbl0859.11037MR96m:14029
  39. [So] C. SOULÉ, A vanishing theorem on arithmetic surfaces, Inventiones Math., Vol. 116, 1994, pp. 544-899. Zbl0834.14013MR95d:14025
  40. [Sz] L. SZPIRO, Sur le théorème de rigidité de Parsin et Arakelov, Journées de Géométrie Algébrique de Rennes, Astérisque, Vol. 64, 1979, pp. 169-202. Zbl0425.14005MR81f:14004
  41. [T] M. TSUJI, Potential theory in modern function theory, Maruzen, Tokyo, 1959. Zbl0087.28401MR22 #5712
  42. [Z1] O. ZARISKI, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Memories of Amer. Math. Soc., New York, 1951. Zbl0045.24001MR12,853f
  43. [Z2] O. ZARISKI, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. of Japan, Vol. 4, 1958, vii + 89 pp. Zbl0093.33904MR20 #3872
  44. [Z3] O. ZARISKI, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. Math., Vol. 76, 1962, pp. 560-615. Zbl0124.37001MR25 #5065
  45. [Zh] S. ZHANG, Positive line bundles on arithmetic surfaces, Ann. Math., Vol. 136, 1992, pp. 569-587. Zbl0788.14017MR93j:14024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.