Dimensions of some affine Deligne–Lusztig varieties

Ulrich Görtz; Thomas J. Haines; Robert E. Kottwitz; Daniel C. Reuman

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 3, page 467-511
  • ISSN: 0012-9593

How to cite

top

Görtz, Ulrich, et al. "Dimensions of some affine Deligne–Lusztig varieties." Annales scientifiques de l'École Normale Supérieure 39.3 (2006): 467-511. <http://eudml.org/doc/82691>.

@article{Görtz2006,
author = {Görtz, Ulrich, Haines, Thomas J., Kottwitz, Robert E., Reuman, Daniel C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Deligne-Lusztig varieties; reductive groups},
language = {eng},
number = {3},
pages = {467-511},
publisher = {Elsevier},
title = {Dimensions of some affine Deligne–Lusztig varieties},
url = {http://eudml.org/doc/82691},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Görtz, Ulrich
AU - Haines, Thomas J.
AU - Kottwitz, Robert E.
AU - Reuman, Daniel C.
TI - Dimensions of some affine Deligne–Lusztig varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 3
SP - 467
EP - 511
LA - eng
KW - Deligne-Lusztig varieties; reductive groups
UR - http://eudml.org/doc/82691
ER -

References

top
  1. [1] Bruhat F., Tits J., Groupes réductifs sur un corps local. I, Inst. Hautes Études Sci. Publ. Math.41 (1972) 5-251. Zbl0254.14017MR327923
  2. [2] Casselman W., Machine calculations in Weyl groups, Invent. Math.116 (1994) 95-108. Zbl0829.20058MR1253190
  3. [3] Chai C.-L., Newton polygons as lattice points, Amer. J. Math.122 (5) (2000) 967-990. Zbl1057.11506MR1781927
  4. [4] Dabrowski R., Comparison of the Bruhat and the Iwahori decompositions of a p -adic Chevalley group, J. Algebra167 (3) (1994) 704-723. Zbl0836.22014MR1287066
  5. [5] Deligne P., La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math.52 (1980). Zbl0456.14014MR601520
  6. [6] Demazure M., Gabriel P., Groupes Algébriques: Tome I. Géométrie algébrique—Généralités—Groupes commutatifs, Masson and CIE, Paris, 1970, 700 pp.+xxvi. Zbl0203.23401
  7. [7] Dieudonné J., Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p g t ; 0 . VII, Math. Ann.134 (1957) 114-133. Zbl0086.02605MR98146
  8. [8] Fargues L., Mantovan E., Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales, Astérisque291 (2004). Zbl1050.11002
  9. [9] Haines T.J., On matrix coefficients of the Satake isomorphism: complements to the paper of Rapoport, Manuscripta Math.101 (2000) 167-174. Zbl0941.22007MR1742250
  10. [10] Haines T., Kottwitz R., Prasad A., Iwahori–Hecke algebras, math.RT/0309168. Zbl1202.22013
  11. [11] Kato S., Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math.66 (1982) 461-468. Zbl0498.17005MR662602
  12. [12] Kottwitz R., Dimensions of Newton strata in the adjoint quotient of reductive groups, Pure Appl. Math. Q., in press, math.AG/0601196. Zbl1109.11033MR2252119
  13. [13] Kottwitz R., Isocrystals with additional structure, Compositio Math.56 (1985) 201-220. Zbl0597.20038MR809866
  14. [14] Kottwitz R., Isocrystals with additional structure. II, Compositio Math.109 (1997) 255-339. Zbl0966.20022MR1485921
  15. [15] Kottwitz R., On the Hodge–Newton decomposition for split groups, Int. Math. Res. Not.26 (2003) 1433-1447. Zbl1074.14016MR1976046
  16. [16] Kottwitz R., Rapoport M., On the existence of F-crystals, Comment. Math. Helv.78 (2003) 153-184, math.NT/0202229. Zbl1126.14023MR1966756
  17. [17] Leigh Lucarelli C., A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu3 (2) (2004) 165-183, math.NT/0211327. Zbl1054.14059MR2055708
  18. [18] Lusztig G., Singularities, character formulas, and a q-analog of weight multiplicities, in: Analyse et topologie sur les espaces singuliers, I–II, (Luminy, 1981), Soc. Math. France, Paris, 1983, pp. 208-229. Zbl0561.22013MR737932
  19. [19] Manin Y., Theory of commutative formal groups over fields of finite characteristic, Uspekhi Mat. Nauk18 (6 (114)) (1963) 3-90, (in Russian); English translation in:, Russian Math. Surveys18 (6) (1963) 1-83. Zbl0128.15603MR157972
  20. [20] Mantovan E., On the cohomology of certain PEL type Shimura varieties, Duke Math. J.129 (3) (2005) 573-610. Zbl1112.11033MR2169874
  21. [21] Matsumoto H., Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Springer Lecture Notes, vol. 590, Springer, Berlin, 1977. Zbl0366.22001MR579177
  22. [22] Mirkovic I., Vilonen K., Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222v2. Zbl1138.22013
  23. [23] Mirkovic I., Vilonen K., Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett.7 (1) (2000) 13-24. Zbl0987.14015MR1748284
  24. [24] Mumford D., The Red Book of Varieties and Schemes, Lecture Notes in Math., vol. 1358, Springer, Berlin, 1988. Zbl0658.14001MR971985
  25. [25] Ngô B.C., Polo P., Résolutions de Demazure affines et formule de Casselman–Shalika géométrique, J. Algebraic Geom.10 (3) (2001) 515-547. Zbl1041.14002MR1832331
  26. [26] Oort F., Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc.17 (2) (2004) 267-296. Zbl1041.14018MR2051612
  27. [27] Rapoport M., A positivity property of the Satake isomorphism, Manuscripta Math.101 (2000) 153-166. Zbl0941.22006MR1742251
  28. [28] Rapoport M., A guide to the reduction modulo p of Shimura varieties, Astérisque298 (2005) 271-318, math.AG/0205022. Zbl1084.11029MR2141705
  29. [29] Rapoport M., Richartz M., On the classification and specialization of F-isocrystals with additional structure, Compositio Math.103 (1996) 153-181. Zbl0874.14008MR1411570
  30. [30] Rapoport M., Zink T., Period Spaces for p-Divisible Groups, Ann. of Math. Stud., vol. 141, Princeton University Press, Princeton, NJ, 1996. Zbl0873.14039MR1393439
  31. [31] Reuman D., Determining whether certain affine Deligne–Lusztig sets are non-empty, Thesis, Chicago, 2002, math.NT/0211434. 
  32. [32] Reuman D., Formulas for the dimensions of some affine Deligne–Lusztig varieties, Michigan Math. J.52 (2) (2004) 435-451. Zbl1053.22010MR2069809
  33. [33] Viehmann E., Moduli spaces of p-divisible groups, math.AG/0502320. 
  34. [34] Viehmann E., The dimension of some affine Deligne–Lusztig varieties, Annales Sci. de l'E.N.S.39 (3) (2006), math.AG/0510385. Zbl1108.14036MR2265677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.