Problème de Levi et convexité holomorphe pour les classes de cohomologie

Aldo Andreotti; François Norguet

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 2, page 197-241
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, and Norguet, François. "Problème de Levi et convexité holomorphe pour les classes de cohomologie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1966): 197-241. <http://eudml.org/doc/83379>.

@article{Andreotti1966,
author = {Andreotti, Aldo, Norguet, François},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex functions},
language = {fre},
number = {2},
pages = {197-241},
publisher = {Scuola normale superiore},
title = {Problème de Levi et convexité holomorphe pour les classes de cohomologie},
url = {http://eudml.org/doc/83379},
volume = {20},
year = {1966},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Norguet, François
TI - Problème de Levi et convexité holomorphe pour les classes de cohomologie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 197
EP - 241
LA - fre
KW - complex functions
UR - http://eudml.org/doc/83379
ER -

References

top
  1. [1] A. Andreotti et H. GrauertThéorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France90, 1962, p. 193-259. Zbl0106.05501MR150342
  2. [2] A. Andreotti et F. NorguetProblème de Levi pour les classes de cohomologie. C. R. Acad. Sc. Paris258, 1964, p. 778-781. Zbl0124.38803MR159960
  3. [3] A. Andreotti et F. NorguetQuelques propriétés de courants définis à l'aide de fonctions holomorphes. Anais Acad. Bras. de Ciencias. Zbl0142.04902
  4. [4] H. Grauert OLevi's problem and the imbedding of real analytic manifolds. Annals of Math., 68, 1958, 460-472. Zbl0108.07804MR98847
  5. [5] H. GrauertEin Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Pubblications mathématiques de l'I. H. E. S. N° 5, 1960. Zbl0100.08001MR121814
  6. [6] K. Kodaira et G. De RhamHarmonic integrals, Lectures delivered at the Institute for Advanced Study, 1950, revised 1953. Princeton, Institute for Advanced Study, 1953, multigraphié. MR37549
  7. [7] P. LelongLes fonctions plurisousharmoniques. Ann. Ec. Norm. Sup.62, 1945, p. 301-338. Zbl0061.23205MR18304
  8. [8] P. LelongIntégration sur un ensemble analytique complexe. Bull. Soc. Math. France, 85, 1957, p. 239-262. Zbl0079.30901MR95967
  9. [9] B. MalgrangeSystèmes différentiels à coefficients constants, Séminaire Bourbaki, 1962-1963, Exposé 246. Zbl0141.27304
  10. [10] E. MartinelliAlcuni teoremi integrali per le funzioni analitiche di più variabili complesse, Memor. Accad. Ital., t. 9, 1938, 269-283. Zbl0022.24002JFM64.0322.04
  11. [11] H.J. ReiffenProlongement de Riemann concernant les classes de cohomologie à supports contpacts, C. R. Acad. Sci. Paris259, 1964, 2333-2335. Zbl0128.17002MR170036
  12. [12] L. SchwartzThéorie des distributions, tome I (seconde édition), Hermann, 1957. Zbl0078.11003MR35918
  13. [13] W. StollNormal families of non-negative divisors. Math. Zeitschr.84, 1964, 154-218. Zbl0126.09702MR165142

Citations in EuDML Documents

top
  1. François Norguet, Espaces analytiques q -pseudoconvexes
  2. Margherita Galbiati, Alberto Tognoli, Alcune proprietà delle varietà algebriche reali
  3. Paolo Zappa, Sulle classi di Dolbeault di tipo ( 0 , n - 1 ) con singolarità in un insieme discreto
  4. Paolo Zappa, Osservazioni sui nuclei di Bochner—Martinelli
  5. Paolo Zappa, Sulle classi di Dolbeault di tipo ( 0 , n - 1 ) con singolarità in un insieme discreto
  6. Daniel Barlet, Convexité de l'espace des cycles
  7. Hans Grauert, Kantenkohomologie
  8. Mihnea Coltoiu, The Levi problem for cohomology classes
  9. A. Andreotti, F. Norguet, Cycles of algebraic manifolds and ¯ -cohomology
  10. Aldo Andreotti, C. Denson Hill, E. E. Levi convexity and the Hans Lewy problem. Part II : vanishing theorems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.