E. E. Levi convexity and the Hans Lewy problem. Part II : vanishing theorems

Aldo Andreotti; C. Denson Hill

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 4, page 747-806
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, and Denson Hill, C.. "E. E. Levi convexity and the Hans Lewy problem. Part II : vanishing theorems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1972): 747-806. <http://eudml.org/doc/83618>.

@article{Andreotti1972,
author = {Andreotti, Aldo, Denson Hill, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {747-806},
publisher = {Scuola normale superiore},
title = {E. E. Levi convexity and the Hans Lewy problem. Part II : vanishing theorems},
url = {http://eudml.org/doc/83618},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Denson Hill, C.
TI - E. E. Levi convexity and the Hans Lewy problem. Part II : vanishing theorems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 747
EP - 806
LA - eng
UR - http://eudml.org/doc/83618
ER -

References

top
  1. [1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR150342
  2. [2] A. Andreotti and F. Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa, ser. 3, 20 (1966), 197-241. Zbl0154.33504MR199439
  3. [3] A. Andreotti and F. Norguet, La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique, Ann. Scuola Norm. Sup. Pisa, ser. 3, 21 (1967), 31-82. Zbl0176.04001MR239118
  4. [4] A. Andreotti and E. Vesentini, Sopra un teorema di Kodaira, Ann. Scuola Norm. Sup. Pisa, ser. 3, 15 (1961), 283-309. Zbl0108.16604MR141140
  5. [5] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Pub. I. H. E. S., 25 (1965), 313-362. Zbl0138.06604MR175148
  6. [6] A. Andreotti and C.D. Hill, E. E. Levi convexity and the Hans Lewy problem, Part I : Reduction to vanishing theorems, to appear in Ann. Scuola Norm. Sup. Pisa. Zbl0256.32007MR460725
  7. [7] L. Hörmander, L2-estimates and existence theorems for the δ operator, Acta Math., 113 (1965), 39-152. Zbl0158.11002
  8. [8] J.J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. Zbl0125.33302MR181815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.