The Levi problem for cohomology classes

Mihnea Coltoiu

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 1, page 141-154
  • ISSN: 0373-0956

Abstract

top
In this paper we extend to complex spaces and coherent analytic sheaves some results of Andreotti and Norguet concerning the extension of cohomology classes.

How to cite

top

Coltoiu, Mihnea. "The Levi problem for cohomology classes." Annales de l'institut Fourier 34.1 (1984): 141-154. <http://eudml.org/doc/74613>.

@article{Coltoiu1984,
abstract = {In this paper we extend to complex spaces and coherent analytic sheaves some results of Andreotti and Norguet concerning the extension of cohomology classes.},
author = {Coltoiu, Mihnea},
journal = {Annales de l'institut Fourier},
keywords = {Levi problem; strongly q-pseudoconvex; strictly q-pseudoconvex; strongly pseudoconcave; non extendibility of cohomology class},
language = {eng},
number = {1},
pages = {141-154},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Levi problem for cohomology classes},
url = {http://eudml.org/doc/74613},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Coltoiu, Mihnea
TI - The Levi problem for cohomology classes
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 1
SP - 141
EP - 154
AB - In this paper we extend to complex spaces and coherent analytic sheaves some results of Andreotti and Norguet concerning the extension of cohomology classes.
LA - eng
KW - Levi problem; strongly q-pseudoconvex; strictly q-pseudoconvex; strongly pseudoconcave; non extendibility of cohomology class
UR - http://eudml.org/doc/74613
ER -

References

top
  1. [1] A. ANDREOTTI, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France, 91 (1963), 1-38. Zbl0113.06403MR27 #2649
  2. [2] A. ANDREOTTI, H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0154.33601MR27 #343
  3. [3] A. ANDREOTTI, A. KAS, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa, sér. III, vol. XXVII, Fasc. II (1973), 187-263. Zbl0278.32007MR54 #13117
  4. [4] A. ANDREOTTI, F. NORGUET, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa, sér. III, vol. XX, Fasc. II (1966), 197-241. Zbl0154.33504MR33 #7583
  5. [5] C. BANICA, O. STANASILA, Méthodes algébriques dans la théorie des espaces complexes, Gauthier-Villars, (1977). Zbl0349.32006
  6. [6] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR21 #1583
  7. [7] R. NARASIMHAN, The Levi problem for complex spaces I, Math. Ann., 142 (1961), 355-365. Zbl0106.28603MR26 #6439
  8. [8] R. NARASIMHAN, Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics, vol. 25, Springer-Verlag New York, Inc., New York, 1966. Zbl0168.06003MR36 #428
  9. [9] H.-J. REIFFEN, Riemannsche Hebbarkeitssätze für Cohomologieklassen und ihre algebraische Träger, Math. Ann., 164 (1966), 272-279. Zbl0142.41102MR33 #5942
  10. [10] Y.-T. SIU, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc., 143 (1969), 77-94. Zbl0186.40404MR40 #5902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.