Sur les algèbres A 0 ( D ¯ ) et A ( D ¯ ) d’un domaine pseudoconvexe non borné

Giuseppe Tomassini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 2, page 243-256
  • ISSN: 0391-173X

How to cite

top

Tomassini, Giuseppe. "Sur les algèbres $A^0 (\overline{D})$ et $A^\infty (\overline{D})$ d’un domaine pseudoconvexe non borné." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.2 (1983): 243-256. <http://eudml.org/doc/83905>.

@article{Tomassini1983,
author = {Tomassini, Giuseppe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generation of algebra of holomorphic functions; division; extension},
language = {fre},
number = {2},
pages = {243-256},
publisher = {Scuola normale superiore},
title = {Sur les algèbres $A^0 (\overline\{D\})$ et $A^\infty (\overline\{D\})$ d’un domaine pseudoconvexe non borné},
url = {http://eudml.org/doc/83905},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Tomassini, Giuseppe
TI - Sur les algèbres $A^0 (\overline{D})$ et $A^\infty (\overline{D})$ d’un domaine pseudoconvexe non borné
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 2
SP - 243
EP - 256
LA - fre
KW - generation of algebra of holomorphic functions; division; extension
UR - http://eudml.org/doc/83905
ER -

References

top
  1. [1] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-255. Zbl0106.05501MR150342
  2. [2] H. Behnke - K. Stein, Konvergente Folgen nichtschlichter Regularitätsbereiche, Ann. Mat. Pura Appl., Ser. IV, 28 (1949), pp. 317-326. Zbl0038.05402MR35338
  3. [3] S. Coen, Sul rango dei fasci coerenti, Boll. Un. Mat. Ital., 22 (1967), pp. 373-382. Zbl0164.38202MR227467
  4. [4] P. De Bartolomeis - G. Tomassini, Finitely generated ideals in A∞(D), à paraître aux Advances in Math. Zbl0499.32012
  5. [5] G.B. Folland - J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies n. 75, Princeton Univ. Press, 1972. Zbl0247.35093MR461588
  6. [6] O. Forster - K.J. Ramspott, Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math., 5 (1968), pp. 255-276. Zbl0157.13302MR232965
  7. [7] T. Gamelin, « Uniform Algebras», Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1969. Zbl0213.40401MR410387
  8. [8] M. Hakim - N. Sibony, Spectre de A(Ω) pour des domaines bornés faiblement pseudoconvexes réguliers, J. Functional Analysis, vol. 37, No 2 (1980), pp. 127-135. Zbl0441.46044
  9. [9] G.M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys, 32:3 (1977), pp. 59-130. Zbl0382.35038MR454067
  10. [10] L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, Princeton, 1966. Zbl0138.06203MR203075
  11. [11] N. Kerzman, Hölder and Lp Estimates for Solutions of ∂u = f, Comm. Pure Appl. Math., 24 (1971), pp. 301-379. Zbl0205.38702
  12. [12] J.J. Kohn, Harmonic Integrals on Strongly Pseudo-Convex Manifolds, Ann. of Math., 78 (1963), pp. 112-148; (1964), pp. 450-472. Zbl0161.09302MR153030
  13. [13] J.J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), pp.443-492. Zbl0125.33302MR181815
  14. [14] B. Malgrange, Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. France, 91 (1963), pp. 113-117. Zbl0113.06302MR152673
  15. [15] N Øvrelid, Integral representation formulas and L p-estimates for the ∂-equation, Math. Scand., 29 (1971), pp. 137-160. Zbl0227.35069
  16. [16] N Øvrelid, Generators of the Maximal Ideals of A(D), Pacific J. Math., vol. 39, no 1 (1971), pp. 219-223. Zbl0231.46090MR310292
  17. [17] Y.T. Siu, The ∂-problem with uniform bounds on derivatives, Math. Ann., 207 (1974), pp. 163-176. Zbl0256.35061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.