A free boundary problem for quasi-linear elliptic equations

Hans Wilhelm Alt; Luis A. Caffarelli; Avner Friedman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 1, page 1-44
  • ISSN: 0391-173X

How to cite

top

Alt, Hans Wilhelm, Caffarelli, Luis A., and Friedman, Avner. "A free boundary problem for quasi-linear elliptic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.1 (1984): 1-44. <http://eudml.org/doc/83923>.

@article{Alt1984,
author = {Alt, Hans Wilhelm, Caffarelli, Luis A., Friedman, Avner},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {existence; minimization problem; Lipschitz continuity; nondegeneracy of the minimum; analyticity of the free boundary},
language = {eng},
number = {1},
pages = {1-44},
publisher = {Scuola normale superiore},
title = {A free boundary problem for quasi-linear elliptic equations},
url = {http://eudml.org/doc/83923},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Alt, Hans Wilhelm
AU - Caffarelli, Luis A.
AU - Friedman, Avner
TI - A free boundary problem for quasi-linear elliptic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 1
SP - 1
EP - 44
LA - eng
KW - existence; minimization problem; Lipschitz continuity; nondegeneracy of the minimum; analyticity of the free boundary
UR - http://eudml.org/doc/83923
ER -

References

top
  1. [1] H.W. Alt - L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), pp. 105-144. Zbl0449.35105MR618549
  2. [2] H.W. Alt - L.A. Caffarelli - A. Friedman, Axially symmetric jet flows, Arch. Rational Mech. Anal., 81 (1983), pp. 97-149 Zbl0515.76017MR682265
  3. [3] H.W. Alt - L.A. Caffarelli - A. Friedman, Asymmetric jet flows, Comm. Pure Appl. Math., 35 (1982), pp. 29-68. Zbl0515.76018MR637494
  4. [4] H.W. Alt - L.A. Caffarelli - A. Friedman, Jet flows with gravity, J. Reine Angew. Math., 331 (1982), pp. 58-103. Zbl0561.76022MR647374
  5. [5] H. Federer, Geometric Measure Theory, Springer Verlag, vol. 153, Berlin- Heidelberg-New York, 1969. Zbl0176.00801MR257325
  6. [6] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, vol. 224, Berlin-Heidelberg-New York, 1977. Zbl0361.35003MR473443
  7. [7] E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Notes on Pure Mathematics, Australian National University, Camberra, 1977. Zbl0402.49033MR638362
  8. [8] V.M. Isakov, Inverse theorems concerning the smoothness of potentials, Differential Equations, 11 (1974), pp. 50-56 (Translated from Russian). Zbl0328.31010
  9. [9] V.M. Isakov, Analyticity of nonlinear transmission problems, Differential Equations, 12 (1976), pp. 41-47 (Translated from Russian). Zbl0343.35035MR445123
  10. [10] D. Kinderlehrer - L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa, 4 (4) (1977), pp. 373-391. Zbl0352.35023MR440187
  11. [11] C.B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer Verlag, Berlin-Heidelberg -New York, 1966. Zbl0142.38701MR202511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.