Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme

Claire Voisin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 4, page 473-492
  • ISSN: 0391-173X

How to cite

top

Voisin, Claire. "Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.4 (1992): 473-492. <http://eudml.org/doc/84133>.

@article{Voisin1992,
author = {Voisin, Claire},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Chow group; Bloch's conjecture; Godeaux surface; algebraic cycles},
language = {fre},
number = {4},
pages = {473-492},
publisher = {Scuola normale superiore},
title = {Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme},
url = {http://eudml.org/doc/84133},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Voisin, Claire
TI - Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 4
SP - 473
EP - 492
LA - fre
KW - Chow group; Bloch's conjecture; Godeaux surface; algebraic cycles
UR - http://eudml.org/doc/84133
ER -

References

top
  1. [1] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Ec. Norm. Sup.10, (1977), 304-392. Zbl0368.14018MR472843
  2. [2] S. Bloch, Lectures on algebraic cycles, Duke University Mathematics Series IV, 1980. Zbl0436.14003MR558224
  3. [3] S. Bloch - A. Kas - D. Lieberman, Zero-cycles on surfaces with p9 = 0, Compo. Math.33, (1976), 135-145. Zbl0337.14006MR435073
  4. [4] S. Bloch - V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math.105, (1983), 1235-1253. Zbl0525.14003MR714776
  5. [5] J. Carlson - P. Griffiths, Infinitesimal variations of Hodge structures and the global Torelli problem, dans "Géométrie Algébrique", Angers, édité par A. Beauville, 1980. Zbl0479.14007MR605336
  6. [6] P. Deligne, Théorie de Hodge II, Publ. Math. I.H.E.S. 40, (1971), 107-126. Zbl0219.14007MR498551
  7. [7] P. Griffiths, On the periods of certain rational integrals I, II, Ann. of Math.90, (1969), 460-541. Zbl0215.08103MR260733
  8. [8] H. Inose - M. Mizukami, Rational equivalence of zero-cycles on some surfaces with pg = 0, Math Ann. 244, (1979), 205-217. Zbl0444.14006MR553252
  9. [9] S.O. Kim, Noether-Lefschetz locus for surfaces, Trans. Amer., Math. Soc. 324, n° 1, 1991. Zbl0739.14019MR1043861
  10. [10] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ.9, (1968), 195-204. Zbl0184.46603MR249428
  11. [11] C.A.M. Peters, On two types of surfaces of general type with vanishing geometric genus, Invent. Math.32, (1976), 33-47. Zbl0305.14012MR409482
  12. [12] H. Saito, On Bloch's metaconjecture, preprint. 
  13. [13] A.A. Roitman, Rational equivalence of zero-cycles, Math. USSR Sbornik18, (1972), 571-588. Zbl0273.14001
  14. [14] S. Zucker, Hodge theory with degenerating coefficients l2-cohomology in the Poincaré metric, Ann. of Math.109, (1979), 415-476. Zbl0446.14002MR534758
  15. [15] A.A. Roitman, The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math.111, (1980), 553-569. Zbl0504.14006MR577137
  16. [16] S. Bloch, Semi-Regularity and de Rham Cohomology, Inventiones Math.17, (1972), 51-66. Zbl0254.14011MR325613
  17. [17] A. Conte - J. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann.238, (1978). Zbl0373.14006MR510310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.