Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications

Zindine Djadli; Andrea Malchiodi; Mohameden Ould Ahmedou

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 2, page 387-434
  • ISSN: 0391-173X

Abstract

top
In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere ( 𝕊 n , h ) . We derive from this analysis some a priori estimates in dimension 5 and 6 . On 𝕊 5 these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On 𝕊 6 we prove the existence of at least one solution when an index formula associated to this conformal invariant is different from zero.

How to cite

top

Djadli, Zindine, Malchiodi, Andrea, and Ould Ahmedou, Mohameden. "Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 387-434. <http://eudml.org/doc/84475>.

@article{Djadli2002,
abstract = {In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere $(\mathbb \{S\}^n,h)$. We derive from this analysis some a priori estimates in dimension $5$ and $6$. On $\mathbb \{S\}^5$ these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On $\mathbb \{S\}^6$ we prove the existence of at least one solution when an index formula associated to this conformal invariant is different from zero.},
author = {Djadli, Zindine, Malchiodi, Andrea, Ould Ahmedou, Mohameden},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {387-434},
publisher = {Scuola normale superiore},
title = {Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications},
url = {http://eudml.org/doc/84475},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Djadli, Zindine
AU - Malchiodi, Andrea
AU - Ould Ahmedou, Mohameden
TI - Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 387
EP - 434
AB - In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere $(\mathbb {S}^n,h)$. We derive from this analysis some a priori estimates in dimension $5$ and $6$. On $\mathbb {S}^5$ these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On $\mathbb {S}^6$ we prove the existence of at least one solution when an index formula associated to this conformal invariant is different from zero.
LA - eng
UR - http://eudml.org/doc/84475
ER -

References

top
  1. [1] S. I. Andersson – H. D. Doebner, Nonlinear partial differential operators and quantization procedures, Proceedings of a workshop held at the Technische Universitt Clausthal, S. I. Andersson – H.-D. Doebner Clausthal (eds.), July 1981. Zbl0513.00009
  2. [2] A. Ambrosetti – J. Garcia Azorero – A. Peral, Perturbation of Δ u + u ( N + 2 ) ( N - 2 ) = 0 , the Scalar Curvature Problem in N and related topics, Journal of Functional Analysis 165 (1999), 117-149. Zbl0938.35056MR1696454
  3. [3] A. Arapostathis – M. F. Ghosh – S. Marcus, Harnack’s inequality for cooperative weakly coupled systems, Comm. Partial Differential Equations 24 (1999), 1555-1571. Zbl0934.35039MR1708101
  4. [4] T. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, Journal of Functional Analysis 32 (1979), 148-174. Zbl0411.46019MR534672
  5. [5] T. Aubin, “Some Nonlinear Problems in Differential Geometry”, Springer-Verlag, 1998. MR1636569
  6. [6] T. Aubin – A. Bahri, Méthodes de topologie algébrique pour le probléme de la courbure scalaire prescrite, Journal des Mathématiques Pures et Appliquées 76 (1997), 525-549. Zbl0886.58109MR1465609
  7. [7] S. Axler – P. Bourdon – W. Ramey, “Harmonic Function Theory”, Springer-Verlag, GTM 137, 1992. Zbl0765.31001MR1184139
  8. [8] A. Bahri, “Critical points at infinity in some variational problems”, Research Notes in Mathematics, 182, Longman-Pitman, London, 1989. Zbl0676.58021MR1019828
  9. [9] A. Bahri, An invariant for Yamabe type flows with applications to scalar curvature problems in higher dimensions, Duke Mathematical Journal 81 (1996), 323-466. Zbl0856.53028MR1395407
  10. [10] A. Bahri – J. M. Coron, The Scalar-Curvature problem on the standard three-dimensional sphere, Journal of Functional Analysis 95 (1991), 106-172. Zbl0722.53032MR1087949
  11. [11] M. Ben Ayed – Y. Chen – H. Chtioui – M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Mathematical Journal 84 (1996), 633-677. Zbl0862.53034MR1408540
  12. [12] T. P. Branson, Group representations arising from Lorentz conformal geometry, Journal of Functional Analysis 74 (1987), 199-291. Zbl0643.58036MR904819
  13. [13] T. P. Branson, Differential operators canonically associated to a conformal structure, Mathematica Scandinavica 57-2 (1985), 293-345. Zbl0596.53009MR832360
  14. [14] T. P. Branson – S. Y. A. Chang – P. C. Yang, Estimates and extremal problems for the log-determinant on 4 -manifolds, Communications in Mathematical Physics 149 (1992), 241-262. Zbl0761.58053MR1186028
  15. [15] S. Y. A. Chang, On a fourth order PDE in conformal geometry, Preprint, 1997. 
  16. [16] S. Y. A. Chang – M. J. Gursky – P. C. Yang, The scalar curvature equation on 2- and 3- spheres, Calculus of Variations and Partial Differential Equations 1 (1993), 205-229. Zbl0822.35043MR1261723
  17. [17] S. Y. A. Chang – M. J. Gursky – P. C. Yang, Regularity of a fourth order non-linear PDE with critical exponent, American Journal of Mathematics 121 (1999), 215-257. Zbl0921.35032MR1680337
  18. [18] S. Y. A. Chang – J. Qing – P. C. Yang, On the Chern-Gauss-Bonnet integral for conformal metrics on 4 , Duke Mathematical Journal, to appear. Zbl0971.53028MR1763657
  19. [19] S. Y. A. Chang – J. Qing – P. C. Yang, Compactification for a class of conformally flat 4 -manifolds, Inventiones Mathematicae, to appear. Zbl0990.53026MR1784799
  20. [20] S. Y. A. Chang – P. Yang, A perturbation result in prescribing scalar curvature on 𝕊 n , Duke Mathematical Journal 64 (1991), 27-69. Zbl0739.53027MR1131392
  21. [21] S. Y. A. Chang – P. C. Yang, Extremal metrics of zeta functional determinants on 4 -manifolds, Annals of Mathematics 142 (1995), 171-212. Zbl0842.58011MR1338677
  22. [22] S. Y. A. Chang – P. C. Yang, On a fourth order curvature invariant, In: “Spectral Problems in Geometry and Arithmetic”, T. Branson (ed.), Comtemporary Mathematics 237, AMS, 1999, 9-28. Zbl0982.53035MR1710786
  23. [23] A. Connes, “Noncommutative geometry”, Academic Press, Inc., San Diego, CA, 1994. Zbl0818.46076MR1303779
  24. [24] Z. Djadli – E. Hebey – M. Ledoux, Paneitz-type operators and applications, Duke Mathematical Journal 104 (2000) 129-169. Zbl0998.58009MR1769728
  25. [25] Z. Djadli – A. Malchiodi – M. Ould Ahmedou, Prescribed fourth order conformal invariant on the standard sphere, Part I, to appear in Comm. Contem. Math. Zbl1023.58020
  26. [26] H. D. Doebner – J. D. Hennig, Differential geometric methods in mathematical physics, Proceedings of the twelfth international conference held at the Technical University of Clausthal, H.-D. Doebner – J. D. Hennig (ed.). Clausthal, August 30-September 2, 1983. Zbl0564.00012
  27. [27] J. Escobar – R. Schoen, Conformal metrics with prescribed scalar curvature, Inventiones Mathematicae 86 (1986), 243-254. Zbl0628.53041MR856845
  28. [28] D. Gilbarg – N. Trudinger, “Elliptic Partial Differential Equations of Second Order”, 2nd edition, Springer-Verlag, 1983. Zbl0562.35001MR737190
  29. [29] M. J. Gursky, The Weyl functional, de Rham cohomology, and Kahler-Einstein metrics, Annals of Mathematics 148 (1998), 315-337. Zbl0949.53025MR1652920
  30. [30] E. Hebey, Changements de métriques conformes sur la sphère – Le problème de Nirenberg, Bull. Sci. Math. 114 (1990), 215-242. Zbl0713.53023MR1056162
  31. [31] Y. Y. Li, Prescribing scalar curvature on 𝕊 n and related topics, Part I, Journal of Differential Equations 120 (1995), 319-410; Part II, Existence and compactness, Communications in Pure and Applied Mathematics, 49 (1996), 437-477. Zbl0827.53039MR1347349
  32. [32] C. S. Lin, A classification of solutions of conformally invariant fourth order equation in n , Commentari Mathematici Helveticii 73 (1998), 206-231. Zbl0933.35057MR1611691
  33. [33] J. Moser, On a nonlinear problem in differential geometry, In: “Dynamical Systems”, M. Peixoto (ed.), Academic Press, New York, 1973, 273-280. Zbl0275.53027MR339258
  34. [34] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint, 1983. 
  35. [35] S. Paneitz, Essential unitarization of symplectics and applications to field quantization, Journal of Functional Analysis 48 (1982), 310-359. Zbl0499.47025MR678176
  36. [36] M. H. Protter – H. F. Weinberger, “Maximum Principles in Differential Equations”, Springer-Verlag, 2nd edition, 1984. Zbl0549.35002MR762825
  37. [37] R. Schoen, On the number of constant scalar curvature metrics in a conformal class, In: “Differential Geometry: A Symposium in Honor of Manfredo Do Carmo”, H. B. Lawson – K. Tenenblat (eds.), (1991), 331-320, Wiley, New York. Zbl0733.53021MR1173050
  38. [38] R. Schoen – D. Zhang, Prescribed scalar curvature on the n -sphere, Calculus of Variations and Partial Differential Equations, 4 (1996), 1-25. Zbl0843.53037MR1379191
  39. [39] J. Serrin – H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differential and Integral Equations 9 (1996), 635-653. Zbl0868.35032MR1401429
  40. [40] J. Wei – X. Xu, On conformal deformations of metrics on 𝕊 n , Journal of Functional Analysis 157 (1998), 292-325. Zbl0924.58120MR1637945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.