Opérateurs géométriques et géométrie conforme

Zindine Djadli

Séminaire de théorie spectrale et géométrie (2004-2005)

  • Volume: 23, page 49-103
  • ISSN: 1624-5458

How to cite

top

Djadli, Zindine. "Opérateurs géométriques et géométrie conforme." Séminaire de théorie spectrale et géométrie 23 (2004-2005): 49-103. <http://eudml.org/doc/11210>.

@article{Djadli2004-2005,
author = {Djadli, Zindine},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Moser-Trudinger inequality; prescribed Gaussian curvature; isospectral surfaces; Paneitz operator; rigidity in conformal geometry.},
language = {fre},
pages = {49-103},
publisher = {Institut Fourier},
title = {Opérateurs géométriques et géométrie conforme},
url = {http://eudml.org/doc/11210},
volume = {23},
year = {2004-2005},
}

TY - JOUR
AU - Djadli, Zindine
TI - Opérateurs géométriques et géométrie conforme
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
PB - Institut Fourier
VL - 23
SP - 49
EP - 103
LA - fre
KW - Moser-Trudinger inequality; prescribed Gaussian curvature; isospectral surfaces; Paneitz operator; rigidity in conformal geometry.
UR - http://eudml.org/doc/11210
ER -

References

top
  1. T. Aubin and A. Bahri. Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. J. Math. Pures Appl. (9), 76(6) :525–549, 1997. Zbl0886.58109MR1465609
  2. T. Aubin and A. Bahri. Une hypothèse topologique pour le problème de la courbure scalaire prescrite. J. Math. Pures Appl. (9), 76(10) :843–850, 1997. Zbl0916.58041MR1489940
  3. Thierry Aubin and Abbas Bahri. Une remarque sur l’indice et la norme infinie des solutions d’équations elliptiques surlinéaires. Ricerche Mat., 48(suppl.) :117–128, 1999. Papers in memory of Ennio De Giorgi (Italian). Zbl0932.35083
  4. David R. Adams. A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2), 128(2) :385–398, 1988. Zbl0672.31008MR960950
  5. Lars V. Ahlfors. Lectures on quasiconformal mappings. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. With the assistance of Clifford J. Earle, Jr., Reprint of the 1966 original. Zbl0605.30002MR883205
  6. Thierry Aubin and Yan Yan Li. On the best Sobolev inequality. J. Math. Pures Appl. (9), 78(4) :353–387, 1999. Zbl0944.46027MR1696357
  7. Thierry Aubin and Yan Yan Li. Sur la meilleure constante dans l’inégalité de Sobolev. C. R. Acad. Sci. Paris Sér. I Math., 328(2) :135–138, 1999. Zbl0934.58036
  8. Antonio Ambrosetti and Andrea Malchiodi. A multiplicity result for the Yamabe problem on S n . J. Funct. Anal., 168(2) :529–561, 1999. Zbl0949.53028MR1719213
  9. Thierry Aubin. Métriques riemanniennes et courbure. J. Differential Geometry, 4 :383–424, 1970. Zbl0212.54102MR279731
  10. Thierry Aubin. Sur la fonction exponentielle. C. R. Acad. Sci. Paris Sér. A-B, 270 :A1514–A1516, 1970. Zbl0197.47802MR271870
  11. Thierry Aubin. Fonction de Green et valeurs propres du laplacien. J. Math. Pures Appl. (9), 53 :347–371, 1974. Zbl0295.35016MR358875
  12. Thierry Aubin. Équations différentielles non linéaires. Bull. Sci. Math. (2), 99(4) :201–210, 1975. Zbl0321.35039MR431292
  13. Thierry Aubin. Étude d’un certain type d’équations différentielles non linéaires. C. R. Acad. Sci. Paris Sér. A-B, 280(7) :Aiii, A455–A457, 1975. Zbl0295.35019
  14. Thierry Aubin. Inégalités concernant la première valeur propre non nulle du laplacien pour certaines variétés riemanniennes. C. R. Acad. Sci. Paris Sér. A-B, 281(22) :Aii, A979–A982, 1975. Zbl0323.35058MR413203
  15. Thierry Aubin. Le problème de Yamabe concernant la courbure scalaire. C. R. Acad. Sci. Paris Sér. A-B, 280 :Aii, A721–A724, 1975. Zbl0299.53026MR365407
  16. Thierry Aubin. Problèmes isopérimétriques et espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B, 280(5) :Aii, A279–A281, 1975. Zbl0295.53024MR407905
  17. Thierry Aubin. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9), 55(3) :269–296, 1976. Zbl0336.53033MR431287
  18. Thierry Aubin. Espaces de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. (2), 100(2) :149–173, 1976. Zbl0328.46030MR488125
  19. Thierry Aubin. Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geometry, 11(4) :573–598, 1976. Zbl0371.46011MR448404
  20. Thierry Aubin. Sur les meilleures constantes dans le théorème d’inclusion de Sobolev. C. R. Acad. Sci. Paris Sér. A-B, 287(11) :A795–A797, 1978. Zbl0425.53021
  21. Thierry Aubin. Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal., 32(2) :148–174, 1979. Zbl0411.46019
  22. Thierry Aubin. Un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire sur la sphère. In Analysis on manifolds (Conf., Univ. Metz, Metz, 1979) (French), volume 80 of Astérisque, pages 4, 57–62. Soc. Math. France, Paris, 1980. Zbl0465.58025MR620170
  23. Thierry Aubin. Best constants in the Sobolev imbedding theorem : the Yamabe problem. In Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 173–184. Princeton Univ. Press, Princeton, N.J., 1982. Zbl0483.53041MR645736
  24. Thierry Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations, volume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. Zbl0512.53044MR681859
  25. Thierry Aubin. Le problème de Yamabe concernant la courbure scalaire. In Differential geometry, Peñíscola 1985, volume 1209 of Lecture Notes in Math., pages 66–72. Springer, Berlin, 1986. Zbl0614.53031MR863745
  26. Thierry Aubin. Prescribed scalar curvature and the method of isometry-concentration. In Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, pages 37–45. Cambridge Univ. Press, Cambridge, 1994. Zbl0818.53061MR1297772
  27. Thierry Aubin. Sur le problème de la courbure scalaire prescrite. Bull. Sci. Math., 118(5) :465–474, 1994. Zbl0828.53035MR1305205
  28. Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. Zbl0896.53003MR1636569
  29. Thierry Aubin. A course in differential geometry, volume 27 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Zbl0966.53001MR1799532
  30. A. Bahri and J.-M. Coron. The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal., 95(1) :106–172, 1991. Zbl0722.53032MR1087949
  31. Thomas P. Branson, Sun-Yung A. Chang, and Paul C. Yang. Estimates and extremals for zeta function determinants on four-manifolds. Comm. Math. Phys., 149(2) :241–262, 1992. Zbl0761.58053MR1186028
  32. Thomas P. Branson, Sun-Yung A. Chang, and Paul C. Yang. Estimates and extremals for zeta function determinants on four-manifolds. Comm. Math. Phys., 149(2) :241–262, 1992. Zbl0761.58053MR1186028
  33. Arthur L. Besse. Einstein manifolds, volume 10 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1987. Zbl0613.53001MR867684
  34. Marcel Berger, Paul Gauduchon, and Edmond Mazet. Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, Vol. 194. Springer-Verlag, Berlin, 1971. Zbl0223.53034
  35. D. Bakry and M. Ledoux. Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J., 85(1) :253–270, 1996. Zbl0870.60071
  36. Massimiliano Berti and Andrea Malchiodi. Non-compactness and multiplicity results for the Yamabe problem on S n . J. Funct. Anal., 180(1) :210–241, 2001. Zbl0979.53038MR1814428
  37. Thomas P. Branson and Bent Orsted. Explicit functional determinants in four dimensions. Proc. Amer. Math. Soc., 113(3) :669–682, 1991. Zbl0762.47019MR1050018
  38. Jean-Pierre Bourguignon. Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math., 63(2) :263–286, 1981. Zbl0456.53033
  39. Thomas P. Branson. Differential operators canonically associated to a conformal structure. Math. Scand., 57(2) :293–345, 1985. Zbl0596.53009MR832360
  40. Thomas P. Branson. Group representations arising from Lorentz conformal geometry. J. Funct. Anal., 74(2) :199–291, 1987. Zbl0643.58036MR904819
  41. Thomas P. Branson. Sharp inequalities, the functional determinant, and the complementary series. Trans. Amer. Math. Soc., 347(10) :3671–3742, 1995. Zbl0848.58047MR1316845
  42. Lennart Carleson and Sun-Yung A. Chang. On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2), 110(2) :113–127, 1986. Zbl0619.58013MR878016
  43. Sun-Yung Alice Chang and Wenxiong Chen. A note on a class of higher order conformally covariant equations. Discrete Contin. Dynam. Systems, 7(2) :275–281, 2001. Zbl1014.35025MR1808400
  44. S.-Y. A. Chang, M. Gursky, and T. Wolff. Lack of compactness in conformal metrics with L d / 2 curvature. J. Geom. Anal., 4(2) :143–153, 1994. Zbl0810.53027MR1277502
  45. Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. The scalar curvature equation on 2 - and 3 -spheres. Calc. Var. Partial Differential Equations, 1(2) :205–229, 1993. Zbl0822.35043MR1261723
  46. Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. Regularity of a fourth order nonlinear PDE with critical exponent. Amer. J. Math., 121(2) :215–257, 1999. Zbl0921.35032MR1680337
  47. Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. of Math. (2), 155(3) :709–787, 2002. Zbl1031.53062MR1923964
  48. Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. A conformally invariant sphere theorem in four dimensions. Publ. Math. Inst. Hautes Études Sci., (98) :105–143, 2003. Zbl1066.53079MR2031200
  49. Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. A conformally invariant sphere theorem in four dimensions. Publ. Math. Inst. Hautes Études Sci., A paraître. Zbl1066.53079
  50. Sun-Yung A. Chang. Extremal functions in a sharp form of Sobolev inequality. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 715–723, Providence, RI, 1987. Amer. Math. Soc. Zbl0692.46029MR934274
  51. Sun-Yung Alice Chang. The Moser-Trudinger inequality and applications to some problems in conformal geometry. In Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), volume 2 of IAS/Park City Math. Ser., pages 65–125. Amer. Math. Soc., Providence, RI, 1996. Zbl0924.58106MR1369587
  52. Sun-Yung Alice Chang. On zeta functional determinant. In Partial differential equations and their applications (Toronto, ON, 1995), volume 12 of CRM Proc. Lecture Notes, pages 25–50. Amer. Math. Soc., Providence, RI, 1997. With notes taken by Jie Qing. Zbl0888.58071MR1479236
  53. Sun-Yung A. Chang. On a fourth-order partial differential equation in conformal geometry. In Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., pages 127–150. Univ. Chicago Press, Chicago, IL, 1999. Zbl0982.53036MR1743859
  54. Chiun-Chuan Chen and Chang-Shou Lin. Topological degree for a mean field equation on Riemann surfaces. Comm. Pure Appl. Math., 56(12) :1667–1727, 2003. Zbl1032.58010MR2001443
  55. Sun-Yung A. Chang and Jie Qing. Zeta functional determinants on manifolds with boundary. Math. Res. Lett., 3(1) :1–17, 1996. Zbl0865.58048MR1393378
  56. Sun-Yung A. Chang and Jie Qing. The zeta functional determinants on manifolds with boundary. I. The formula. J. Funct. Anal., 147(2) :327–362, 1997. Zbl0914.58039MR1454485
  57. Sun-Yung A. Chang and Jie Qing. The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set. J. Funct. Anal., 147(2) :363–399, 1997. Zbl0914.58040MR1454486
  58. Sun-Yung A. Chang, Jie Qing, and Paul C. Yang. On the topology of conformally compact einstein 4-manifolds. J. Reine Angew. Math., A paraître. Zbl1078.53031
  59. Sun-Yung A. Chang, Jie Qing, and Paul C. Yang. Compactification of a class of conformally flat 4-manifold. Invent. Math., 142(1) :65–93, 2000. Zbl0990.53026MR1784799
  60. Roger Chen and Xingwang Xu. Compactness of isospectral conformal metrics and isospectral potentials on a 4 -manifold. Duke Math. J., 84(1) :131–154, 1996. Zbl0856.53032MR1394750
  61. Sun-Yung A. Chang, Xingwang Xu, and Paul C. Yang. A perturbation result for prescribing mean curvature. Math. Ann., 310(3) :473–496, 1998. Zbl0893.35033MR1612266
  62. Sun-Yung Alice Chang and Paul C. Yang. Prescribing Gaussian curvature on S 2 . Acta Math., 159(3-4) :215–259, 1987. Zbl0636.53053MR908146
  63. Sun-Yung A. Chang and Paul C. Yang. Conformal deformation of metrics on S 2 . J. Differential Geom., 27(2) :259–296, 1988. Zbl0649.53022MR925123
  64. Sun-Yung A. Chang and Paul C. Yang. Compactness of isospectral conformal metrics on S 3 . Comment. Math. Helv., 64(3) :363–374, 1989. Zbl0679.53038MR998854
  65. Sun-Yung A. Chang and Paul C. Yang. The conformal deformation equation and isospectral set of conformal metrics. In Recent developments in geometry (Los Angeles, CA, 1987), volume 101 of Contemp. Math., pages 165–178. Amer. Math. Soc., Providence, RI, 1989. Zbl0698.53024MR1034980
  66. Sun-Yung A. Chang and Paul C.-P. Yang. Isospectral conformal metrics on 3 -manifolds. J. Amer. Math. Soc., 3(1) :117–145, 1990. Zbl0701.58056MR1015647
  67. Sun-Yung A. Chang and Paul C. Yang. A perturbation result in prescribing scalar curvature on S n . Duke Math. J., 64(1) :27–69, 1991. Zbl0739.53027MR1131392
  68. Sun-Yung A. Chang and Paul C. Yang. Spectral invariants of conformal metrics. In Harmonic analysis (Sendai, 1990), ICM-90 Satell. Conf. Proc., pages 51–60. Springer, Tokyo, 1991. Zbl0804.53066MR1261428
  69. Sun-Yung Alice Chang and Paul C. Yang. Addendum to : “A perturbation result in prescribing scalar curvature on S n ” [Duke Math. J. 64 (1991), no. 1, 27–69 ; MR 92m :53063]. Duke Math. J., 71(1) :333–335, 1993. Zbl0796.53045
  70. Luis A. Caffarelli and Yi Song Yang. Vortex condensation in the Chern-Simons Higgs model : an existence theorem. Comm. Math. Phys., 168(2) :321–336, 1995. Zbl0846.58063MR1324400
  71. Sun-Yung A. Chang and Paul C. Yang. Extremal metrics of zeta function determinants on 4 -manifolds. Ann. of Math. (2), 142(1) :171–212, 1995. Zbl0842.58011MR1338677
  72. Sun-Yung A. Chang and Paul C. Yang. Determinants and extremal metrics in conformal geometry. In Geometry from the Pacific Rim (Singapore, 1994), pages 37–57. de Gruyter, Berlin, 1997. Zbl0898.58008MR1468237
  73. Sun-Yung A. Chang and Paul C. Yang. On uniqueness of solutions of n th order differential equations in conformal geometry. Math. Res. Lett., 4(1) :91–102, 1997. Zbl0903.53027MR1432813
  74. Sun-Yung A. Chang and Paul C. Yang. On a fourth order curvature invariant. In Spectral problems in geometry and arithmetic (Iowa City, IA, 1997), volume 237 of Contemp. Math., pages 9–28. Amer. Math. Soc., Providence, RI, 1999. Zbl0982.53035MR1710786
  75. Sun-Yung A. Chang and Paul C. Yang. Fourth order equations in conformal geometry. In Global analysis and harmonic analysis (Marseille-Luminy, 1999), volume 4 of Sémin. Congr., pages 155–165. Soc. Math. France, Paris, 2000. Zbl0997.35016MR1822359
  76. Zindine Djadli and Olivier Druet. Extremal functions for optimal Sobolev inequalities on compact manifolds. Calc. Var. Partial Differential Equations, 12(1) :59–84, 2001. Zbl0998.58008MR1808107
  77. Andrzej Derdziński. Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compositio Math., 49(3) :405–433, 1983. Zbl0527.53030MR707181
  78. Zindine Djadli, Emmanuel Hebey, and Michel Ledoux. Paneitz-type operators and applications. Duke Math. J., 104(1) :129–169, 2000. Zbl0998.58009MR1769728
  79. Zindine Djadli and Antoinette Jourdain. Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5(1) :205–226, 2002. Zbl1177.58016MR1881932
  80. Zindine Djadli. Existence result for the mean field problem on Riemann surfaces of all genuses. Préprint. Zbl1151.53035
  81. Zindine Djadli. Nonlinear elliptic equations involving critical Sobolev exponent on compact Riemannian manifolds in presence of symmetries. Rev. Mat. Complut., 12(1) :201–229, 1999. Zbl0968.58016MR1698904
  82. Zindine Djadli. Nonlinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. Calc. Var. Partial Differential Equations, 8(4) :293–326, 1999. Zbl0953.58017MR1700267
  83. Weiyue Ding, Jürgen Jost, Jiayu Li, and Guofang Wang. Existence results for mean field equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 16(5) :653–666, 1999. Zbl0937.35055MR1712560
  84. Zindine Djadli and Andrea Malchiodi. Existence of conformal metrics with constant Q -curvature. préprint, ArXiv : math.AP/0410141, À paraître dans Annals of Mathematics. Zbl1076.53046
  85. Zindine Djadli and Andrea Malchiodi. A fourth order uniformization theorem on some four manifolds with large total Q -curvature. C. R. Acad. Sci. Paris, Ser. I 340 (2005), 341-346. Zbl1076.53046MR2127107
  86. Zindine Djadli, Andrea Malchiodi, and Mohameden Ould Ahmedou. Prescribing a fourth order conformal invariant on the standard sphere. I. A perturbation result. Commun. Contemp. Math., 4(3) :375–408, 2002. Zbl1023.58020MR1918751
  87. Zindine Djadli, Andrea Malchiodi, and Mohameden Ould Ahmedou. The prescribed boundary men curvature problem on B 4 . préprint. Zbl1108.35070MR2095819
  88. Zindine Djadli, Andrea Malchiodi, and Mohameden Ould Ahmedou. Prescribing a fourth order conformal invariant on the standard sphere, part ii : Blow-up analysis and applications. Annali della Scuola Normale Superiore di Pisa, 1(2) :387–434, 2002. Zbl1150.53012MR1991145
  89. Zindine Djadli, Andrea Malchiodi, and Mohameden Ould Ahmedou. Prescribing scalar and boundary mean curvature on the three dimensional half sphere. J. Geom. Anal., 13(2) :233–267, 2003. Zbl1092.53028MR1967027
  90. José Escobar and G. Garcia. Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary. préprint. Zbl1056.53026MR2054619
  91. José F. Escobar and Richard M. Schoen. Conformal metrics with prescribed scalar curvature. Invent. Math., 86(2) :243–254, 1986. Zbl0628.53041MR856845
  92. José Escobar. Sharp constant in a sobolev trace inequality. Indiana University Journal, (37) :687–698, 1988. Zbl0666.35014MR962929
  93. José Escobar. Conformal deformation of a riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Annals of Mathematics, (136) :1–50, 1992. Zbl0766.53033MR1173925
  94. José Escobar. Conformal metrics with prescribed mean curvature on the boundary. Calculus of Variations and Partial Differential Equations, (4) :559–592, 1996. Zbl0867.53034MR1416000
  95. Matthew J. Gursky. Locally conformally flat four- and six-manifolds of positive scalar curvature and positive Euler characteristic. Indiana Univ. Math. J., 43(3) :747–774, 1994. Zbl0832.53032MR1305946
  96. Matthew J. Gursky. The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann. of Math. (2), 148(1) :315–337, 1998. Zbl0949.53025MR1652920
  97. Matthew J. Gursky. The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE. Comm. Math. Phys., 207(1) :131–143, 1999. Zbl0988.58013MR1724863
  98. Matthew J. Gursky. Four-manifolds with δ W + = 0 and Einstein constants of the sphere. Math. Ann., 318(3) :417–431, 2000. Zbl1034.53032MR1800764
  99. Matthew J. Gursky. Some local and non-local variational problems in Riemannian geometry. In Global analysis and harmonic analysis (Marseille-Luminy, 1999), volume 4 of Sémin. Congr., pages 167–177. Soc. Math. France, Paris, 2000. Zbl0996.53027MR1822360
  100. Matthew J. Gursky and Jeff A. Viaclovsky. A new variational characterization of three-dimensional space forms. Invent. Math., 145(2) :251–278, 2001. Zbl1006.58008MR1872547
  101. Matthew J. Gursky and Jeff A. Viaclovsky. A fully nonlinear equation on four-manifolds with positive scalar curvature. J. Differential Geom., 63(1) :131–154, 2003. Zbl1070.53018MR2015262
  102. Saïd Ilias. Sur une inégalité de Sobolev. C. R. Acad. Sci. Paris Sér. I Math., 294(22) :731–734, 1982. Zbl0504.53038MR667236
  103. Saïd Ilias. Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier (Grenoble), 33(2) :151–165, 1983. Zbl0528.53040MR699492
  104. Saïd Ilias. Un nouveau résultat de pincement de la première valeur propre du laplacien et conjecture du diamètre pincé. Ann. Inst. Fourier (Grenoble), 43(3) :843–863, 1993. Zbl0783.53024MR1242618
  105. Saïd Ilias. Inégalités de Sobolev et résultats d’isolement pour les applications harmoniques. J. Funct. Anal., 139(1) :182–195, 1996. Zbl0868.53027
  106. Maxim Kontsevich and Simeon Vishik. Geometry of determinants of elliptic operators. In Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), volume 131 of Progr. Math., pages 173–197. Birkhäuser Boston, Boston, MA, 1995. Zbl0920.58061MR1373003
  107. Jerry L. Kazdan and F. W. Warner. Curvature functions for compact 2 -manifolds. Ann. of Math. (2), 99 :14–47, 1974. Zbl0273.53034MR343205
  108. Jerry L. Kazdan and F. W. Warner. Curvature functions for open 2 -manifolds. Ann. of Math. (2), 99 :203–219, 1974. Zbl0278.53031MR343206
  109. Jerry L. Kazdan and F. W. Warner. Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. of Math. (2), 101 :317–331, 1975. Zbl0297.53020MR375153
  110. Jerry L. Kazdan and F. W. Warner. Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geometry, 10 :113–134, 1975. Zbl0296.53037MR365409
  111. Claude LeBrun. On the topology of self-dual 4 -manifolds. Proc. Amer. Math. Soc., 98(4) :637–640, 1986. Zbl0606.53029MR861766
  112. Claude LeBrun. Einstein metrics and Mostow rigidity. Math. Res. Lett., 2(1) :1–8, 1995. Zbl0974.53035MR1312972
  113. Yan Yan Li. Prescribing scalar curvature on S 3 , S 4 and related problems. J. Funct. Anal., 118(1) :43–118, 1993. Zbl0790.53040MR1245597
  114. Yan Yan Li. Prescribing scalar curvature on S n and related problems. I. J. Differential Equations, 120(2) :319–410, 1995. Zbl0827.53039MR1347349
  115. Yanyan Li. Prescribing scalar curvature on S n and related problems. II. Existence and compactness. Comm. Pure Appl. Math., 49(6) :541–597, 1996. Zbl0849.53031MR1383201
  116. Yan Yan Li. Harnack type inequality : the method of moving planes. Comm. Math. Phys., 200(2) :421–444, 1999. Zbl0928.35057MR1673972
  117. Peter Li. Curvature and function theory on Riemannian manifolds. In Surveys in differential geometry, Surv. Differ. Geom., VII, pages 375–432. International Press, Somerville, MA, 2000. Zbl1066.53084MR1919432
  118. Yan Yan Li. Best Sobolev inequalities on Riemannian manifolds. In Differential equations and mathematical physics (Birmingham, AL, 1999), volume 16 of AMS/IP Stud. Adv. Math., pages 273–278. Amer. Math. Soc., Providence, RI, 2000. Zbl1161.58318MR1764757
  119. André Lichnerowicz. Géométrie des groupes de transformations. Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958. Zbl0096.16001MR124009
  120. Elliott H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2), 118(2) :349–374, 1983. Zbl0527.42011MR717827
  121. Chang-Shou Lin. A classification of solutions of a conformally invariant fourth order equation in R n . Comment. Math. Helv., 73(2) :206–231, 1998. Zbl0933.35057MR1611691
  122. Chang-Shou Lin. Topological degree for mean field equations on S 2 . Duke Math. J., 104(3) :501–536, 2000. Zbl0964.35038MR1781481
  123. P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, 1(1) :145–201, 1985. Zbl0704.49005MR834360
  124. John M. Lee and Thomas H. Parker. The Yamabe problem. Bull. Amer. Math. Soc. (N.S.), 17(1) :37–91, 1987. Zbl0633.53062MR888880
  125. Andrea Malchiodi. Compactness of solutions to some geometric fourth-order equations. J. Reine Angew. Math., à paraître. Zbl1098.53032MR2248155
  126. Christophe Margerin. A sharp characterization of the smooth 4 -sphere in curvature terms. Comm. Anal. Geom., 6(1) :21–65, 1998. Zbl0966.53022MR1619838
  127. J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20 :1077–1092, 1970/71. Zbl0213.13001MR301504
  128. S. Minakshisundaram and AA. Pleijel. Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math., 1 :242–256, 1949. Zbl0041.42701MR31145
  129. Carlo Marchioro and Mario Pulvirenti. Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994. Zbl0789.76002MR1245492
  130. H. P. McKean, Jr. and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1(1) :43–69, 1967. Zbl0198.44301MR217739
  131. Kate Okikiolu. The Campbell-Hausdorff theorem for elliptic operators and a related trace formula. Duke Math. J., 79(3) :687–722, 1995. Zbl0854.35137MR1355181
  132. Kate Okikiolu. The multiplicative anomaly for determinants of elliptic operators. Duke Math. J., 79(3) :723–750, 1995. Zbl0851.58048MR1355182
  133. K. Okikiolu. Critical metrics for the determinant of the Laplacian in odd dimensions. Ann. of Math. (2), 153(2) :471–531, 2001. Zbl0985.58013MR1829756
  134. E. Onofri. On the positivity of the effective action in a theory of random surfaces. Comm. Math. Phys., 86(3) :321–326, 1982. Zbl0506.47031MR677001
  135. B. Osgood, R. Phillips, and P. Sarnak. Compact isospectral sets of surfaces. J. Funct. Anal., 80(1) :212–234, 1988. Zbl0653.53021MR960229
  136. B. Osgood, R. Phillips, and P. Sarnak. Extremals of determinants of Laplacians. J. Funct. Anal., 80(1) :148–211, 1988. Zbl0653.53022MR960228
  137. S. Paneitz. A quartic conformally covariant diferential operator for arbitrary pseudo-riemannian manifolds. Préprint, 1883. 
  138. A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3) :207–210, 1981. MR623209
  139. Alexander Polden. Curves and surfaces of least total curvature and fourth-order flows. Dissertation - Universität Tubingen, 1996. 
  140. Ken Richardson. Critical points of the determinant of the Laplace operator. J. Funct. Anal., 122(1) :52–83, 1994. Zbl0805.58063MR1274583
  141. Steven Rosenberg. The Laplacian on a Riemannian manifold, volume 31 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. An introduction to analysis on manifolds. Zbl0868.58074MR1462892
  142. D. B. Ray and I. M. Singer. R -torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 :145–210, 1971. Zbl0239.58014MR295381
  143. Richard Schoen. Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom., 20(2) :479–495, 1984. Zbl0576.53028MR788292
  144. Richard M. Schoen. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pages 120–154. Springer, Berlin, 1989. Zbl0702.49038MR994021
  145. Richard M. Schoen. On the number of constant scalar curvature metrics in a conformal class. In Differential geometry, volume 52 of Pitman Monogr. Surveys Pure Appl. Math., pages 311–320. Longman Sci. Tech., Harlow, 1991. Zbl0733.53021MR1173050
  146. Richard M. Schoen. A report on some recent progress on nonlinear problems in geometry. In Surveys in differential geometry (Cambridge, MA, 1990), pages 201–241. Lehigh Univ., Bethlehem, PA, 1991. Zbl0752.53025MR1144528
  147. S.L. Sobolev. Sur un théorème d’analyse fonctionnelle. Math. Sb., 46 :471–496, 1938. Zbl0022.14803
  148. Michael Struwe and Gabriella Tarantello. On multivortex solutions in Chern-Simons gauge theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1(1) :109–121, 1998. Zbl0912.58046MR1619043
  149. Michael Struwe. The existence of surfaces of constant mean curvature with free boundaries. Acta Math., 160(1-2) :19–64, 1988. Zbl0646.53005MR926524
  150. Michael Struwe. Variational methods. Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. Zbl0746.49010MR1078018
  151. R. Schoen and S. T. Yau. On the structure of manifolds with positive scalar curvature. Manuscripta Math., 28(1-3) :159–183, 1979. Zbl0423.53032MR535700
  152. Richard Schoen and Shing Tung Yau. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., 65(1) :45–76, 1979. Zbl0405.53045MR526976
  153. Richard Schoen and Shing Tung Yau. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., 65(1) :45–76, 1979. Zbl0405.53045MR526976
  154. Richard Schoen and Shing Tung Yau. Positivity of the total mass of a general space-time. Phys. Rev. Lett., 43(20) :1457–1459, 1979. Zbl0405.53045MR547753
  155. Richard M. Schoen and Shing Tung Yau. Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. U.S.A., 76(3) :1024–1025, 1979. Zbl0415.53029MR524327
  156. Richard Schoen and Shing Tung Yau. Proof of the positive mass theorem. II. Comm. Math. Phys., 79(2) :231–260, 1981. Zbl0494.53028MR612249
  157. R. Schoen and S.-T. Yau. Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math., 92(1) :47–71, 1988. Zbl0658.53038MR931204
  158. R. Schoen and S.-T. Yau. Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso. Zbl0830.53001MR1333601
  159. Richard Schoen and Dong Zhang. Prescribed scalar curvature on the n -sphere. Calc. Var. Partial Differential Equations, 4(1) :1–25, 1996. Zbl0843.53037MR1379191
  160. Giorgio Talenti. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 110 :353–372, 1976. Zbl0353.46018MR463908
  161. Gabriella Tarantello. Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys., 37(8) :3769–3796, 1996. Zbl0863.58081MR1400816
  162. Neil S. Trudinger. On imbeddings into Orlicz spaces and some applications. J. Math. Mech., 17 :473–483, 1967. Zbl0163.36402MR216286
  163. Neil S. Trudinger. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3), 22 :265–274, 1968. Zbl0159.23801MR240748
  164. Karen K. Uhlenbeck and Jeff A. Viaclovsky. Regularity of weak solutions to critical exponent variational equations. Math. Res. Lett., 7(5-6) :651–656, 2000. Zbl0977.58020MR1809291
  165. Jeff A. Viaclovsky. Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101(2) :283–316, 2000. Zbl0990.53035MR1738176
  166. Juncheng Wei and Xingwang Xu. Classification of solutions of higher order conformally invariant equations. Math. Ann., 313(2) :207–228, 1999. Zbl0940.35082MR1679783
  167. Hidehiko Yamabe. On a deformation of Riemannian structures on compact manifolds. Osaka Math. J., 12 :21–37, 1960. Zbl0096.37201MR125546
  168. Yisong Yang. On a system of nonlinear elliptic equations arising in theoretical physics. J. Funct. Anal., 170(1) :1–36, 2000. Zbl0942.35069MR1736194
  169. Paul C. Yang and Shing Tung Yau. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(1) :55–63, 1980. Zbl0446.58017MR577325

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.