Sur la complexité du principe de Tarski-Seidenberg

Joos Heintz; Marie-Françoise Roy; Pablo Solernó

Bulletin de la Société Mathématique de France (1990)

  • Volume: 118, Issue: 1, page 101-126
  • ISSN: 0037-9484

How to cite

top

Heintz, Joos, Roy, Marie-Françoise, and Solernó, Pablo. "Sur la complexité du principe de Tarski-Seidenberg." Bulletin de la Société Mathématique de France 118.1 (1990): 101-126. <http://eudml.org/doc/87591>.

@article{Heintz1990,
author = {Heintz, Joos, Roy, Marie-Françoise, Solernó, Pablo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {real closed field; polynomial complexity; algorithm for quantifier elimination; simple exponential complexity; sequential model; parallel model},
language = {fre},
number = {1},
pages = {101-126},
publisher = {Société mathématique de France},
title = {Sur la complexité du principe de Tarski-Seidenberg},
url = {http://eudml.org/doc/87591},
volume = {118},
year = {1990},
}

TY - JOUR
AU - Heintz, Joos
AU - Roy, Marie-Françoise
AU - Solernó, Pablo
TI - Sur la complexité du principe de Tarski-Seidenberg
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 1
SP - 101
EP - 126
LA - fre
KW - real closed field; polynomial complexity; algorithm for quantifier elimination; simple exponential complexity; sequential model; parallel model
UR - http://eudml.org/doc/87591
ER -

References

top
  1. [1] BEN-OR (M.), KOZEN (D.), REIF (J.). — The complexity of elementary algebra and geometry, J. of Computation and Systems Sciences, t. 32, 1986, p. 251-264. Zbl0634.03031MR87m:03056
  2. [2] BERKOWITZ (S.J.). — On computing the determinant in small parallel time using a small number of processors, Information Processing Letter, t. 18, 1984, p. 147-150. Zbl0541.68019MR85k:65111
  3. [3] BOCHNAK (J.), COSTE (M.), ROY (M.-F.). — Géométrie algébrique réelle. — Springer Verlag, 1987. Zbl0633.14016MR90b:14030
  4. [4] CANNY (J.). — Some algebraic and geometric computations in PS-PACE, ACM Symposium on the theory of computation, 1988, p. 460-467. 
  5. [5] CANNY (J.). — The complexity of robot motion planning. — MIT Press, 1989. 
  6. [6] COLLINS (G.). — Quantifier elimination for real closed fields by cylindric algebraic decomposition, in Second GI Conference on Automata Theory and Formal Languages. — Lect. Notes in Comp. Sciences. — Springer-Verlag, Berlin, t. 33, 1975, p. 134-183. Zbl0318.02051MR53 #7771
  7. [7] CANIGLIA (L.), GALLIGO (A.), HEINTZ (J.). — Some new effectivity bounds in computational geometry, Proc. AAECC-6 (Rome 1988), Best Paper Award AAECC-6. — Springer Lecture Notes in Computer Science, t. 357, p. 131-151. Zbl0685.68044MR90j:13001
  8. [8] COSTE (M.), ROY (M.-F.). — Thom's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets, J. of Symbolic Computation, t. 5, 1988, p. 121-129. Zbl0689.14006MR89g:12002
  9. [9] DAVENPORT (J.), HEINTZ (J.). — Real quantifier elimination is doubly exponential, J. of Symbolic Computation, t. 5, 1988, p. 29-35. Zbl0663.03015MR89g:03009
  10. [10] FITCHAS (N.), GALLIGO (A.), MORGENSTERN (J.). — Algorithmes rapides en séquentiel et en parallèle pour l'élimination des quantificateurs en géométrie élémentaire, Séminaire Structures Ordonnées, U.E.R. de Math. Univ. Paris VII, 1987. Version finale à paraître aux Publications de l'Université de Paris VII (1990). Zbl0704.03014
  11. [11] FITCHAS (N.), GALLIGO (A.), MORGENSTERN (J.). — Precise sequential and parallel complexity bounds for the quantifier elimination of algebraically closed fields, à paraître dans Journal of Pure and Applied Algebra. Zbl0716.03023
  12. [12] VON ZUR GATHEN (J.). — Parallel arithmetic computations : a survey, Proc 13th Conf. MFCS, 1986. Zbl0616.68037MR874591
  13. [13] GONZALEZ (L.), LOMBARDI (H.), RECIO (T.), ROY (M.-F.). — Sturm-Habicht sequences, Proceedings ISSAC, ACM Press, 1989, p. 136-145. 
  14. [14] GONZALEZ (L.), LOMBARDI (H.), RECIO (T.), ROY (M.-F.). — Sous-résultants et spécialisation de la suite de Sturm, à paraître au RAIRO Informatique théorique. Zbl0732.68059
  15. [15] GRIGOR'EV (D.). — Complexity of deciding Tarski algebra, J. Symbolic Computation, t. 5, 1988, p. 65-108. Zbl0689.03021MR90b:03054
  16. [16] GRIGOR'EV (D.), VOROBJOV (N.). — Solving systems of polynomial inequalities in subexponential time, J. Symbolic Computation, t. 5, 1988, p. 37-64. Zbl0662.12001MR89h:13001
  17. [17] HEINTZ (J.). — Definability and fast quantifier elimination in algebraically closed fields, Theor. Comput. Sci., t. 24, 1983, p. 239-277. Zbl0546.03017MR85a:68062
  18. [18] HEINTZ (J.), ROY (M.-F.), SOLERNÓ (P.). — On the complexity of semialgebraic sets, Proc. IFIP (San Francisco, 1989), North Holland, 1989, p. 293-298. 
  19. [19] HEINTZ (J.), ROY (M.-F.), SOLERNO (P.). — Complexité du principe de Tarski-Seidenberg, C.R.A.S. Paris, t. 309, 1989, p. 825-830. Zbl0704.03013MR92c:12012
  20. [20] KOBAYASHI (H.), MORITSUGU (S.), HOGAN (R.W.). — On solving systems of algebraic equations, soumis au Journal of Symbolic Computation. 
  21. [21] KRICK (T.), LOGAR (A.). — Membership problems, representations and the computation of the radical of one-dimensional ideals, à paraître dans les Actes de MEGA, 1990. 
  22. [22] LOOS (R.). — Generalized poynomial reaminder sequences, in Computer Algebra, Symbolic and Algebraic Computation. — Ed. Buchberger, Collins, Loos, Springer Verlag, 1982, p. 115-138. Zbl0577.13001
  23. [23] RENEGAR (J.). — A faster PSPACE algorithm for deciding the existential theory of the reals, Technical Report 792, Cornell University Ithaca, 1988. 
  24. [24] RENEGAR (J.). — On the computational complexity and geometry of the first order theory of the reals, Technical Report 856, Cornell University Ithaca, 1989. 
  25. [25] ROY (M.-F.), SZPIRGLAS (A.). — Complexity of computations with real algebraic numbers, à paraître au Journal of Symbolic Computation. 
  26. [26] SEIDENBERG (A.). — A new decision method for elementary algebra and geometry, Ann. Math., t. 60, 1954, p. 365-374. Zbl0056.01804MR16,209a
  27. [27] SHAFAREVITCH (I.S.). — Algebraic geometry. — Springer Verlag, 1974. 
  28. [28] SOLERNÓ (P.). — Complejidad de conjuntos semialgebraicos, Thèse, Université de Buenos Aires, 1989. 
  29. [29] STURM (C.). — Mémoire sur la résolution des équations numériques, Ins. France Sc. Math. Phys., t. 6, 1835. Zbl15.0063.02
  30. [30] SYLVESTER (J.T.). — On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's function, Trans. Roy. Soc. London (1853), reprint in Sylvester, Collected Math Papers, Chelsea Pub. Comp. N.Y., vol. 1, 1983, p. 429-586. 
  31. [31] TARSKI (A.). — A decision method for elementary algebra and geometry. — Berkeley, 1951. Zbl0044.25102MR13,423a
  32. [32] VOROBJOV (N.). — Bounds of real roots of a system of algebraic equations, Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst., t. 13, p. 7-19. 
  33. [33] WALKER (R.). — Algebraic curves. — Princeton University Press, 1950. Zbl0039.37701MR11,387e
  34. [34] WEIPSFENNING (V.). — The complexity of linear problems in fields, J. Symbolic Computation, t. 5, 1988, p. 3-27. Zbl0646.03005MR89g:11123

Citations in EuDML Documents

top
  1. Pablo Solerno, Une inégalité de Lojasiewicz effective
  2. Bernd Bank, Joos Heintz, Teresa Krick, Reinhard Mandel, Pablo Solernó, Une borne optimale pour la programmation entière quasi-convexe
  3. Marie-Françoise Roy, Introduction à la géométrie algébrique réelle
  4. Felice Ronga, Un procédé d'élimination effective et quelques applications
  5. Bernd Bank, Marc Giusti, Joos Heintz, Luis M. Pardo, Generalized polar varieties and an efficient real elimination
  6. Gal Binyamini, Sergei Yakovenko, Polynomial bounds for the oscillation of solutions of Fuchsian systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.