Démonstration d'un théorème de Penner sur la composition des twists de Dehn

Albert Fathi

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 4, page 467-484
  • ISSN: 0037-9484

How to cite

top

Fathi, Albert. "Démonstration d'un théorème de Penner sur la composition des twists de Dehn." Bulletin de la Société Mathématique de France 120.4 (1992): 467-484. <http://eudml.org/doc/87652>.

@article{Fathi1992,
author = {Fathi, Albert},
journal = {Bulletin de la Société Mathématique de France},
keywords = {diffeomorphisms of compact 2-manifolds; examples of pseudo-Anosov diffeomorphisms; collections of pairwise disjoint nonparallel noncontractible simple closed curves; composition of Dehn twists; measured foliations; action on measured foliations},
language = {fre},
number = {4},
pages = {467-484},
publisher = {Société mathématique de France},
title = {Démonstration d'un théorème de Penner sur la composition des twists de Dehn},
url = {http://eudml.org/doc/87652},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Fathi, Albert
TI - Démonstration d'un théorème de Penner sur la composition des twists de Dehn
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 4
SP - 467
EP - 484
LA - fre
KW - diffeomorphisms of compact 2-manifolds; examples of pseudo-Anosov diffeomorphisms; collections of pairwise disjoint nonparallel noncontractible simple closed curves; composition of Dehn twists; measured foliations; action on measured foliations
UR - http://eudml.org/doc/87652
ER -

References

top
  1. [Fa] FATHI (A.). — Dehn twists and pseudo-Anosov diffeomorphisms, Invent. Math., t. 87, 1987, p. 129-151. Zbl0618.58027MR88c:57033
  2. [FLP] FATHI (A.), LAUDEBNBACH (F.) et POENARU (V.). — Travaux de Thurston sur les surfaces, Astérisque, t. 66-67, 1979. MR82m:57003
  3. [Ha] HANDEL (M.). — Global shadowing of pseudo-Anosov homeomorphisms, Ergodic Theory Dynamical Systems, t. 5, 1985, p. 373-377. Zbl0576.58025MR87e:58172
  4. [Hi] HIRAIDE (K.). — Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., t. 27, 1990, p. 117-162. Zbl0713.58042MR91b:58184
  5. [Le1] LEWOWICZ (J.). — Persistence in Expansive Systems, Ergodic Theory Dynamical Systems, t. 3, 1983, p. 567-578. Zbl0529.58021MR85m:58140
  6. [Le2] LEWOWICZ (J.). — Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat., t. 20, 1989, p. 113-133. Zbl0753.58022MR92i:58139
  7. [LS] LEWOWICZ (J.) and LIMA (E.). — Analytic models of pseudo-Anosov maps, Ergodic Theory Dynamical Systems, t. 6, 1986, p. 385-392. Zbl0608.58035MR87m:58130
  8. [Pe] PENNER (R.). — A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc., t. 310, 1988, p. 179-197. Zbl0706.57008MR89k:57026
  9. [St] STREBEL (K.). — Quadratic differentials. — Springer-Verlag, New-York, Heidelberg, Berlin, Tokyo, 1984. Zbl0547.30001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.