Graded lagrangian submanifolds

Paul Seidel

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 1, page 103-149
  • ISSN: 0037-9484

How to cite

top

Seidel, Paul. "Graded lagrangian submanifolds." Bulletin de la Société Mathématique de France 128.1 (2000): 103-149. <http://eudml.org/doc/87820>.

@article{Seidel2000,
author = {Seidel, Paul},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lagrangian submanifold; Floer homology; Maslov index; generalized Dehn twists},
language = {eng},
number = {1},
pages = {103-149},
publisher = {Société mathématique de France},
title = {Graded lagrangian submanifolds},
url = {http://eudml.org/doc/87820},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Seidel, Paul
TI - Graded lagrangian submanifolds
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 1
SP - 103
EP - 149
LA - eng
KW - Lagrangian submanifold; Floer homology; Maslov index; generalized Dehn twists
UR - http://eudml.org/doc/87820
ER -

References

top
  1. [1] ARNOL'D (V.I.). — Normal forms for functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek and Lagrangian singularities, Funct. Anal. Appl., t. 6, 1972, p. 254-272. Zbl0278.57011
  2. [2] BESSE (A.). — Manifolds all of whose geodesics are closed, Erg. der Mathematik und ihrer Grenzgebiete, vol. 93, Springer, 1978. Zbl0387.53010MR80c:53044
  3. [3] BRIESKORN (E.). — Die Auflösung rationaler Singularitäten holomorpher Abbildungen, Math. Ann., t. 178, 1968, p. 255-270. Zbl0159.37703MR38 #2140
  4. [4] CERF (J.). — Sur les difféomorphismes de la sphère de dimension trois (Г4 = 0), Lecture Notes in Math., vol. 53, Springer, 1968. Zbl0164.24502MR37 #4824
  5. [5] DOSTOGLOU (S.), SALAMON (D.). — Self dual instantons and holomorphic curves, Annals of Math., t. 139, 1994, p. 581-640. Zbl0812.58031MR95g:58050
  6. [6] DUISTERMAAT (J.). — On the Morse index in variational calculus, Advances in Math., t. 21, 1976, p. 173-195. Zbl0361.49026MR58 #31190
  7. [7] FLOER (A.). — A relative Morse index for the symplectic action, Comm. Pure Appl. Math., t. 41, 1988, p. 393-407. Zbl0633.58009MR89f:58055
  8. [8] FLOER (A.). — Witten's complex and infinite dimensional Morse theory, J. Differential Geom., t. 30, 1989, p. 207-221. Zbl0678.58012MR90d:58029
  9. [9] HAEFLIGER (A.). — Plongements différentiables des variétés dans variétés, Comm. Math. Helv., t. 36, 1962, p. 47-82. Zbl0102.38603MR26 #3069
  10. [10] HAEFLIGER (A.). — Knotted spheres and related geometric problems, Proceedings of the ICM, Moscow, 1966, p. 437-445. Zbl0192.60304MR39 #6325
  11. [11] HOFER (H.), SALAMON (D.). — Floer homology and Novikov rings, The Floer memorial volume (H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, eds.), Progress in Mathematics, vol. 133, Birkhäuser, 1995, p. 483-524. Zbl0842.58029MR97f:57032
  12. [12] KLINGENBERG (W.). — Riemannian geometry. — De Gruyter, 1982. Zbl0495.53036MR84j:53001
  13. [13] KONTSEVICH (M.). — Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Zürich, 1994, Birkhäuser, 1995, p. 120-139. Zbl0846.53021MR97f:32040
  14. [14] KWON (D.), OH (Y.-G.). — Structure of the image of (pseudo)-holomorphic discs with totally real boundary conditions, Comm. Anal. Geom., t. 8, 2000, p. 31-82. Zbl0951.32025MR2001b:32050
  15. [15] LAWSON (H.B.), MICHELSOHN (M.-L.). — Spin geometry. — Princeton Univ. Press, 1989. Zbl0688.57001MR91g:53001
  16. [16] LAZZARINI (L.). — Existence of a somewhere injective pseudo-holomorphic disc, Preprint, December, 1998. 
  17. [17] MCDUFF (D.). — Symplectic manifolds with contact type boundaries, Invent. Math., t. 103, 1991, p. 651-671. Zbl0719.53015MR92e:53042
  18. [18] MILNOR (J.). — Singular points of complex hypersurfaces. — Princeton Univ. Press, 1968. Zbl0184.48405MR39 #969
  19. [19] MUNKRES (J.). — Differentiable isotopies of the 2-sphere, Notices Amer. Math. Soc., t. 5, 1958, p. 582. 
  20. [20] OH (Y.-G.). — Floer cohomology of Lagrangian intersections and pseudo-holomorphic discs I, Comm. Pure Appl. Math., t. 46, 1993, p. 949-994. Zbl0795.58019MR95d:58029a
  21. [21] OH (Y.-G.). — Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Int. Math. Res. Notices, 1996, p. 305-346. Zbl0858.58017MR97j:58048
  22. [22] OH (Y.-G.). — On the structure of pseudo-holomorphic discs with totally real boundary conditions, J. Geom. Anal., t. 7, 1997, p. 305-327. Zbl0931.53023MR99g:58017
  23. [23] POLTEROVICH (L.). — Surgery of Lagrange submanifolds, Geom. Funct. Anal., t. 1, 1991, p. 198-210. Zbl0754.57027MR93d:57062
  24. [24] POŹNIAK (M.). — Floer homology, Novikov rings and clean intersections, in Ya. Eliashberg, D. Fuchs, T. Ratiu, A. Wenstein (eds.), Northen California Symplectic Geometry Seminar, Amer. Math. Soc. Translations Series 2, vol. 196, 1999, p. 119-182. Zbl0948.57025MR2001a:53124
  25. [25] ROBBIN (J.), SALAMON (D.). — The Maslov index for paths, Topology, t. 32, 1993, p. 827-844. Zbl0798.58018MR94i:58071
  26. [26] ROBBIN (J.), SALAMON (D.). — The spectral flow and the Maslov index, Bull. London Math. Soc., t. 27, 1995, p. 1-33. Zbl0859.58025MR96d:58021
  27. [27] SALAMON (D.), ZEHNDER (E.). — Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., t. 45, 1992, p. 1303-1360. Zbl0766.58023MR93g:58028
  28. [28] SEIDEL (P.). — Floer homology and the symplectic isotopy problem. — Ph.D. thesis, Oxford University, 1997. 
  29. [29] SEIDEL (P.). — π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., t. 7, 1997, p. 1046-1095. Zbl0928.53042MR99b:57068
  30. [30] SEIDEL (P.). — Lagrangian two-spheres can be symplectically knotted. — J. Diff. Geom, in press. Zbl1032.53068
  31. [31] VITERBO (C.). — Intersection des sous-variétés Lagrangiennes, fonctionnelles d'action et indice des systèmes Hamiltoniens, Bull. Soc. Math. France, t. 115, 1987, p. 361-390. Zbl0639.58018MR89b:58081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.