Towards the Jantzen conjecture

A. Joseph

Compositio Mathematica (1980)

  • Volume: 40, Issue: 1, page 35-67
  • ISSN: 0010-437X

How to cite

top

Joseph, A.. "Towards the Jantzen conjecture." Compositio Mathematica 40.1 (1980): 35-67. <http://eudml.org/doc/89425>.

@article{Joseph1980,
author = {Joseph, A.},
journal = {Compositio Mathematica},
keywords = {Jantzen conjecture; Weyl group representations; primitive ideals},
language = {eng},
number = {1},
pages = {35-67},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Towards the Jantzen conjecture},
url = {http://eudml.org/doc/89425},
volume = {40},
year = {1980},
}

TY - JOUR
AU - Joseph, A.
TI - Towards the Jantzen conjecture
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 1
SP - 35
EP - 67
LA - eng
KW - Jantzen conjecture; Weyl group representations; primitive ideals
UR - http://eudml.org/doc/89425
ER -

References

top
  1. [1] W. Borho: Berechnung der Gelfand-Kirillov-Dimension bei induzierten Darstellungen. Math. Ann., 225 (1977) 177-194. Zbl0346.17012MR453832
  2. [2] W. Borho: Definition einer Dixmier-Abbildung für sl(n, C). Invent. Math., 40 (1977) 143-169. Zbl0346.17014MR442046
  3. [3] W. Borho: Recent advances in the enveloping algebras of semi-simple Lie algebras. Sém. Bourbaki, n° 489, Nov. 1976. Zbl0394.17005
  4. [4] W. Borho, P. Gabriel and R. Rentschler: Primideale in Einhüllenden auflösbarer Lie-algebren, Lecture Notes in Mathematics, No. 357, Springer-Verlag, Berlin/Heidelberg /New York, 1973. Zbl0293.17005MR376790
  5. [5] W. Borho and J.C. Jantzen: Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-algebra. Invent. Math., 39 (1977) 1-53. Zbl0327.17002MR453826
  6. [6] W. Borho and H. Kraft: Über die Gelfand-Kirillov-Dimension. Math. Ann., 220 (1976) 1-24. Zbl0306.17005MR412240
  7. [7] W. Borho and R. Rentschler: Oresche Teilmengen in Einhüllenden Algebren. Math. Ann., 217 (1975) 201-210. Zbl0297.17004MR401853
  8. [8] N. Conze: Algèbres d'operateurs différentiels et quotients des algèbres enveloppantes. Bull. Math. Soc. France, 102 (1974) 379-415. Zbl0298.17012MR374214
  9. [9] N. Conze-Berline and M. Duflo: Sur les représentations induites des groupes semi-simple complexes. Compos. Math., 34 (1977) 307-336. Zbl0389.22016MR439991
  10. [10] J. Dixmier: Algèbres enveloppantes, cahiers scientifiques, XXXVII, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR498737
  11. [11] J. Dixmier: Polarisations dans les algèbres de Lie, II, Bull. Soc. Math. France, 104 (1976) 145-164. Zbl0335.17002MR424885
  12. [12] M. Duflo: Représentations irréductibles des groupes semi-simples complexes. Lecture Notes in Mathematics, No. 497, Springer-Verlag, Berlin/ Heidelberg/New York, 1975, pp. 26-88. Zbl0315.22008MR399353
  13. [13] M. Duflo: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Ann. Math., 105 (1977) 107-130. Zbl0346.17011MR430005
  14. [14] H. Garnir: Théorie de la représentation linéaire des groupes symétriques. Thèse, Liège, 1950 and Mém. Soc. Roy. Sci. Liège (4) 10 (1950). Zbl0045.15801MR36237
  15. [15] I.N. Herstein: Noncommutative Rings. Carus mathematical monographs, No. 15 (1968). Zbl0177.05801MR227205
  16. [16] I.N. Herstein: Topics in ring theory. Chicago lecture notes in mathematics, The University of Chicago Press, 1969. Zbl0232.16001MR271135
  17. [17] N. Jacobson: Lie algebras. Interscience tracts in pure and applied mathematics, No. 10, New York (1962). Zbl0121.27504MR143793
  18. [18] J.C. Jantzen: Kontravariante formen auf induzierte Darstellungen halbeinfacher Lie-algebren. Math. Ann., 226 (1977) 53-65. Zbl0372.17003MR439902
  19. [19] J.C. Jantzen: Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren. Math. Z.140 (1974) 127-149. Zbl0279.20036MR432773
  20. [20] J.C. Jantzen: Moduln mit einem höchsten Gewicht. Habilitationsschrift, Bonn, 1977. 
  21. [21] A. Joseph: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie réductive. Comptes Rendus, A284 (1977) 425-427. Zbl0362.17007MR427404
  22. [22] A. Joseph: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, unpublished. (The main results were reported in [21]. A shorter preliminary version appeared in Lecture Notes in Mathematics, No. 587, Springer-Verlag, Berlin/Heidelberg/New York, 1977, pp. 102-118.) Zbl0374.17004MR450350
  23. [23] A. Joseph: On the annihilators of simple subquotients of the principal series. Ann. Ec. Norm. Sup.10 (1977) 419-440. Zbl0386.17004MR480653
  24. [24] A. Joseph: A preparation theorem for the prime spectrum of a semisimple Lie algebra. J. of Algebra, 48 (1977) 241-289. Zbl0405.17007MR453829
  25. [25] A. Joseph: Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules. J. Lond. Math. Soc.18 (1978) 50-60. Zbl0401.17007MR506500
  26. [26] A. Joseph: Gelfand-Kirillov conjecture for induced ideals in the semisimple case. Bull. Math. Soc. France (In the press). Zbl0407.17004
  27. [27] D.E. Knuth: Permutations, matrices and generalized Young tableaux. Pac. J. Math., 34 (1970) 709-727. Zbl0199.31901MR272654
  28. [28] A. Lascoux: Thèse, ParisVII, 1977. 
  29. [29] J. Lepowsky: Uniqueness of embeddings of certain induced modules. Proc. Amer. Math. Soc., 56 (1976) 55-58. Zbl0335.17004MR399195
  30. [30] R.W. Richardson: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. London Math. Soc., 6 (1974) 21-24. Zbl0287.20036MR330311
  31. [31] C. Schensted: Longest increasing and decreasing subsequences. Canad. J. Math., 13 (1961) 179-191. Zbl0097.25202MR121305
  32. [32] J.-P. Serre: Algèbre Locale Multiplicités. Lecture notes in mathematics, No. 11, Springer-Verlag, Berlin/Heidelberg/ New York, 1965. Zbl0142.28603MR201468
  33. [33] W. Specht: Die irreduziblen Darstellungen der symmetrischen Gruppe. Math. Z., 39 (1935) 696-711. Zbl0011.10301MR1545531JFM61.0109.02
  34. [34] G. Zuckerman: Tensor products of finite and infinite dimensional representations of semisimple Lie groups, preprint, 1977. Zbl0384.22004MR457636
  35. [35] R. Hotta and T.A. Springer: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. Math., 41 (1977) 113-127. Zbl0389.20037MR486164
  36. [36] A. Joseph: Primitive ideals in the enveloping algebras of sl(3) and sp(4), unpublished. 
  37. [37] I.G. Macdonald: Some irreducible representations of the Weyl groups, Bull. London Math. Soc., 4 (1972) 148-150. Zbl0251.20043MR320171
  38. [38] T.A. Springer: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent Math., 36 (1976) 173-207. Zbl0374.20054MR442103
  39. [39] A. Joseph and L.W. Small: An additivity principle for Goldie rank. Israel J. Math.31 (1978) 105-114. Zbl0395.17010MR516246
  40. [40] D.A. Vogan: Gelfand-Kirillov dimension for Harish-Chandra modules, Invent.48 (1978) 75-98. Zbl0389.17002MR506503
  41. [41] W.M. Beynon and G. Lusztig: Some numerical results on the characters of exceptional Weyl groups, preprint, Warwick, 1978. Zbl0416.20033MR503002
  42. [42] Dz. Hadziev: Some questions in the theory of invariants (In Russian), Mat. Sb.72 (1967) 420-435. Zbl0182.05402MR223495

Citations in EuDML Documents

top
  1. A. Joseph, Towards the Jantzen conjecture. II
  2. Walter Borho, On the Joseph-small additivity principle for goldie ranks. A study on extensions of noetherian rings with applications to enveloping algebras
  3. O. Gabber, A. Joseph, On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula
  4. A. Joseph, Towards the Jantzen conjecture. III
  5. Anthony Joseph, On the Gel'fand-Kirillov conjecture for induced ideals in the semisimple case
  6. Hisayosi Matumoto, C - -Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.