C - -Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations

Hisayosi Matumoto

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 2, page 311-367
  • ISSN: 0012-9593

How to cite

top

Matumoto, Hisayosi. "$C^{-\infty }$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations." Annales scientifiques de l'École Normale Supérieure 23.2 (1990): 311-367. <http://eudml.org/doc/82274>.

@article{Matumoto1990,
author = {Matumoto, Hisayosi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {irreducible admissible representation; intertwining operators; continuous Whittaker vectors; complex linear semisimple group; wave front set; Richardson orbit; dimension function; harmonic polynomials; Goldie rank polynomial},
language = {eng},
number = {2},
pages = {311-367},
publisher = {Elsevier},
title = {$C^\{-\infty \}$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations},
url = {http://eudml.org/doc/82274},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Matumoto, Hisayosi
TI - $C^{-\infty }$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 2
SP - 311
EP - 367
LA - eng
KW - irreducible admissible representation; intertwining operators; continuous Whittaker vectors; complex linear semisimple group; wave front set; Richardson orbit; dimension function; harmonic polynomials; Goldie rank polynomial
UR - http://eudml.org/doc/82274
ER -

References

top
  1. [BV1] D. BARBASCH and D. A. VOGAN Jr., The Local Structure of Characters (J. Funct. Anal., vol. 37, 1980, pp. 27-55). Zbl0436.22011MR82e:22024
  2. [BV2] D. BARBASCH and D. A. VOGAN Jr., Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann. Vol. 259, 1982, pp. 153-199). Zbl0489.22010MR83m:22026
  3. [BV3] D. BARBASCH and D. A. VOGAN Jr., Primitive Ideals and Orbital Integrals in Complex exceptional Groups (J. Algebra, Vol. 80, 1983, pp. 350-382). Zbl0513.22009MR84h:22038
  4. [BV4] D. BARBASCH and D. A. VOGAN Jr., Unipotent Representations of Complex Semisimple Lie Groups (Ann, of Math., Vol. 121, 1985, pp. 41-110). Zbl0582.22007
  5. [BV5] D. BARBASCH and D. A. VOGAN Jr., Weyl Group Representations and nilpotent Orbits, in : P. C. TROMBI, editor, "Representation Theory of Reductive Groups" (Progress in Mathematics, Vol. 40, pp. 21-33, Birkhäuser, Boston-Basel-Stuttgart, 1983). Zbl0537.22013MR85g:22025
  6. [BeG] J. BERNSTEIN and S. I. GELFAND, Tensor Product of Finite and Infinite Dimensional Representations of Semisimple Lie Algebras (Compos. Math., 41, 1980, pp. 245-285). Zbl0445.17006MR82c:17003
  7. [BeyL] W. M. BEYNON and G. LUSZTIG, Some Numerical Results on the Characters of Exceptional Weyl Groups (Math. Soc. Camb. Phil. Soc., Vol. 84, 1978, pp. 417-426). Zbl0416.20033MR80a:20017
  8. [BW] A. BOREL and N. R. WALLACH, "Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups." (Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1980). Zbl0443.22010MR83c:22018
  9. [BoBr] W. BORHO and J.-L. BRYLINSKI, Differential Operators on Homogeneous Spaces III (Invent. Math., Vol. 80, 1985, pp. 1-68). Zbl0577.22014MR87i:22045
  10. [BoBrM] W. BORHO, J.-L. BRYLINSKI and R. D. MACPHERSON, Nilpotent Orbits, Primitive Ideals, and Characteristic Classes, preprint, Max-Planck-Institut für Mathematik, Bonn, January, 1988. 
  11. [BoKr] W. BORHO and H. KRAFT, Uber primitive ideale in der Einhüllenden einer halbeinfachen Lie-Algebra (Invent. Math., Vol. 39, 1977, pp. 1-53). Zbl0327.17002
  12. [BoM1] W. BORHO and R. D. MACPHERSON, Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes (C.R. Acad. Sci. Paris, T. 292, 1981, pp. 707-710). Zbl0467.20036MR82f:14002
  13. [BoM2] W. BORHO and R. D. MACPHERSON, Partial Resolutions of Nilpotent Varieties (Astérisque, Vol. 101-102, 1983, pp. 23-74). Zbl0576.14046MR85j:14087
  14. [Ca1] W. CASSELMAN, A letter to Harish-Chandra, November 30, 1982. 
  15. [Ca2] W. CASSELMAN, Jacquet Modules for Real Reductive groups, in : Proceedings of the International Congress of Mathematics, Helsinki, 1978, pp. 557-563. MR83h:22025
  16. [Ca3] W. CASSELMAN, Canonical Extensions of Harish-Chandra Modules to Representations of G, preprint. 
  17. [CD] N. CONZE-BERLINE and M. DUFLO, Sur les représentations induites des groupes semi-simples complexes (Compos. Math., Vol. 34, 1977, pp. 307-336). Zbl0389.22016MR55 #12872
  18. [D1] M. DUFLO, Représentations irréductibles des groupes semi-simples complexes, pp. 26-88 in : Analyse Harmonique sur les Groupes de Lie (Lect. Notes Math., No. 497, Springer-Verlag, Berlin-Heidelberg-New York, 1975). Zbl0315.22008MR53 #3198
  19. [D2] M. DUFLO, Sur la classifications des idéaux primitifs dans l'algèbre de Lie semi-simple (Ann. Math., Vol. 1977, pp. 107-120). Zbl0346.17011MR55 #3013
  20. [D3] M. DUFLO, Polynômes de Vogan pour SL(n, C), pp. 64-76 in : Non-Commutative Harmonic Analysis (Lecture Notes in Mathematics, No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0414.22018MR81b:22015
  21. [GJ] O. GABBER and A. JOSEPH, Oh the Bernstein-Gelfand-Gelfand Resolution and the Duflo sum Formula (Compos. Math., Vol. 43, 1981, pp. 107-131). Zbl0461.17004MR82k:17009
  22. [GG1] I. M. GELFAND and M. I. GRAEV, Categories of Group Representations and the Problem of Classifying Irreducible Representations (Soviet Math. Dokl., Vol. 3, 1962, pp. 1382-1385). 
  23. [GG2] I. M. GELFAND and M. I. GRAEV, Construction of Irreducible Representations of Simple Algebraic Groups Over a Finite field (Soviet Math. Dokl., Vol. 3, 1962, pp. 1646-1649). Zbl0119.26902MR26 #6271
  24. [Gi] V. GINSBURG, G-modules, Springer's Representations and bivariant Chern Classes (Adv. Math., Vol. 61, 1986, pp. 1-48). Zbl0601.22008MR87k:17014
  25. [Go] R. GOODMAN, Horospherical Functions on Symmetric Spaces (Canadian Matehatical Society Conference Proceedings Vol. 1, 1981, pp. 125-133). Zbl0545.43008
  26. [GW] R. GOODMAN and N. R. WALLACH, Whittaker Vectors and Conical Vectors (J. Funct. Anal., Vol. 39, 1980, pp. 199-279). Zbl0475.22010MR82i:22018
  27. [GorM] M. GORESKY and R. MACPHERSON, "Stratified Morse Theory", Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1980. Zbl0526.57022
  28. [Ha1] M. HASHIZUME, Whittaker models for semisimple Lie groups (Jpn J. Math., Vol. 5, 1979, pp. 349-401). Zbl0506.22016MR82g:10048
  29. [Ha2] M. HASHIZUME, Whittaker Models for Representations with Highest Weights, in : Lectures on Harmonic analysis on Lie Groups and Related Topics (Strasbourg, 1979, pp. 45-50, Lect. Math., Vol. 14, Kinokuniya Book Store, Tokyo, 1982). Zbl0596.22005
  30. [Ha3] M. HASHIZUME, Whittaker Functions on Semisimple Lie Groups (Hiroshima Math. J., Vol. 13, 1982, pp. 259-293). Zbl0524.43005MR84d:22018
  31. [He] S. HELGASON, A Duality for Symmetric Spaces with Applications to Group Representations (Adv. Math., Vol. 5, 1970, pp. 1-154). Zbl0209.25403MR41 #8587
  32. [HS] P. J. HILTON and U. STAMMBACH, "A Course in Homological Algebra", GTM No. 4, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0238.18006
  33. [Hi1] H. HIRONAKA, Resolution of Singularities of an algebraic geometry over a field of Characteristic 0 (Ann. Math., Vol. 79, 1964, pp. 109-326). Zbl0122.38603MR33 #7333
  34. [Hi2] H. HIRONAKA, Subanalytic sets, in : "Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. AKIZUKI", pp. 453-493, Kinokuniya Book Store, Tokyo, 1973. Zbl0297.32008MR51 #13275
  35. [Hör] L. HÖRMANDER, Fourier Integral Operators I (Acta Math., Vol. 127, 1971, pp. 79-183). Zbl0212.46601MR52 #9299
  36. [Hot1] R. HOTTA, On Springer's Representations (J. Fac. Sci. Univ. Tokyo, IA Vol. 28, 1982, pp. 863-876). Zbl0584.20033MR83h:20038
  37. [Hot2] R. HOTTA, On Joseph's Construction of Weyl Group Representations (Tohoky Math. J., Vol. 36, 1984, pp. 49-74). Zbl0545.20029MR86h:20061
  38. [Hot3] R. HOTTA, A local formula for Springer's Representation (Adv. Stud. Pure Math., Vol. 6, 1985, pp. 127-138). Zbl0571.20033MR87b:20059
  39. [HotK] R. HOTTA and MASAKI KASHIWARA, The Invariant Holonomic System on a Semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). Zbl0538.22013MR87i:22041
  40. [How] R. HOWE, Wave Front Sets of Representations of Lie Groups, in "Automorphic Forms, Representation Theory, and Arithmetic", Bombay, 1981. Zbl0494.22010MR83c:22014
  41. [Ja] H. JACQUET, Fonction de Whittaker associées aux groupes de Chevalley (Bull. Soc. Math. France, Vol. 95, 1967, pp. 243-309). Zbl0155.05901MR42 #6158
  42. [JL] H. JACQUET and R. P. LANGLANDS, "Automorphic Form on GL (2)" (Lect. Notes Math., No. 114, Springer-Verlag, Berlin-Heidelberg-New York). Zbl0236.12010MR53 #5481
  43. [Jo1] A. JOSEPH, On the Annihilators of the Simple Subquotients of the Principal series (Ann. Scient. Éc. Norm. Sup. (4), Vol. 10, 1977, pp. 419-440). Zbl0386.17004MR58 #809
  44. [Jo2] A. JOSEPH, Dixmier's problem for Verma and Principal Series Submodules (J. London Math. Soc., (2), Vol. 20, 1979, pp. 193-204). Zbl0421.17005MR81c:17016
  45. [Jo3] A. JOSEPH, W-module Structures in the Primitive Spectrum of the Enveloping Algebra of a Semisimple Lie Algebra, pp. 116-135 in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0422.17004MR80k:17007
  46. [Jo4] A. JOSEPH, Towards the Jantzen conjecture I (Compos. Math., Vol. 40, 1980, pp. 35-67). Zbl0424.17004MR81m:17013a
  47. [Jo5] A. JOSEPH, Towards the Jantzen conjecture II (Compos. Math., Vol. 40, 1980, pp. 69-78). Zbl0424.17005MR81m:17013a
  48. [Jo6] A. JOSEPH, Kostant's Problem, Goldie rank and Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
  49. [Jo7] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra I (J. Algebra, Vol. 65, 1980, pp. 269-283). Zbl0441.17004MR82f:17009
  50. [Jo8] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lei Algebra II (J. Algebra, Vol. 65, 1980, pp. 284-306). Zbl0441.17004MR82f:17009
  51. [Jo9] A. JOSEPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra III (J. Algebra, Vol. 73, 1981, pp. 295-326). Zbl0482.17002MR83k:17010
  52. [Jo10] A. JOSEPH, Towards the Jantzen conjecture III (Compos. Math., Vol. 41, 1981, pp. 23-30). Zbl0446.17005MR81m:17013b
  53. [Jo11] A. JOSEPH, On the Classification of Primitive Ideals in the enveloping Algebra of a samisimple Lie Algebra, pp. 30-76 in : Lect. Notes Math., No. 1024, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0518.17003MR85b:17008
  54. [Jo12] A. JOSEPH, On the Cyclicity of vectors Associated with Duflo Involutions, pp. 145-188 in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 1243, Springer-Verlag, Berlin-Heidelberg-New York, 1986). Zbl0621.17006
  55. [Kas] M. KASHIWARA, The Riemann-Hilbert Problem for Holonomic Systems, Publ. R.I.M.S., Kyoto Univ., Vol. 20, 1984, pp. 319-365. Zbl0566.32023MR86j:58142
  56. [KV1] M. KASHIWARA and M. VERGNE, Functions on the Shilov boundary of the Generalized half plane, in : Non-Commutative Harmonic Analysis (Lecture Notes in Mathematics, No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0416.22006MR81e:22022
  57. [KV2] M. KASHIWARA and M. VERGNE, K-types and the Singular Spectrum, in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0411.22015MR81m:22022
  58. [KT] M. KASHIWARA and T. TANISAKI, The Characteristic cycles of Holomomic Systems on a Flag Manifold-related to the Weyl Group Algebra (Invent. Math., Vol. 77, 1984, pp. 185-198). Zbl0611.22008MR86m:17015
  59. [Kaw1] N. KAWANAKA, Generalized Gelfand-Graev Representations and Ennola Duality, in “Algebraic Groups and Related Topics” (Adv. Stud. Pure Math., Vol. 6, Kinokuniya Book Store and North-Holland, 1985, pp. 175-206). Zbl0573.20038MR87e:20075
  60. [Kaw2] N. KAWANAKA, Generalized Gelfand-Graev Representations of Exceptional Simple Algebraic Groups over a Finite field I (Invent. Math., Vol. 84, 1986, pp. 575-616). Zbl0596.20028MR88a:20058
  61. [Kaw3] N. KAWANAKA, Shintani lifting and Generalized Gelfand-Graev Representations (Proc. Symp. Pure Math., Vol. 47, 1987, pp. 147-163). Zbl0654.20046MR89h:22037
  62. [KL1] D. A. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke Algebras (Invent. Math. Vol. 53, 1979, pp. 165-184). Zbl0499.20035MR81j:20066
  63. [KL2] D. A. KAZHDAN and G. LUSZTIG, A topological Approach to Springer's Representations (Adv. Math., Vol. 38, 1980, pp. 222-228). Zbl0458.20035MR82f:20076
  64. [Ki1] D. R. KING, The Primitive Ideals assoated to Harish-Chandra Modules and Certain harmonic Polynomials. (Thesis, M.I.T., 1979). 
  65. [Ki2] D. R. KING, The Character Polynomial of the Annihilator of an Irreducible Harish-Chandra Module (Am. J. Math., Vol. 103, 1981, pp. 1195-1240). Zbl0486.17003MR83d:22010a
  66. [Kn] A. W. KNAPP, “Representation Theory of Semisimple Groups, An Overview Based on Examples”, Princeton Mathematical series 36, Princeton University Press, Lawrenceville, New Jersey, 1986. Zbl0604.22001MR87j:22022
  67. [Ko1] B. KOSTANT, Lie algebra Cohomology and the Generalized Borel-Weil Theorem (Ann. Math., Vol. 48, 1978, pp. 101-184). MR80b:22020
  68. [Ko2] B. KOSTANT, On Whittaker Vectors and Representation Theory (Invent. Math., Vol. 48, 1978, pp. 101-184). Zbl0405.22013MR80b:22020
  69. [Le] J. LEPOWSKI, Generalized Verma Modules, the Cartan-Helgason Theorem, and the Harish-Chandra Homomorphism (J. Algebra, Vol. 49, 1977, pp. 470-495). Zbl0381.17005MR57 #3312
  70. [LeW] J. LEPOWSKI and N. R. WALLACH, Finite- and Infinite-dimensional Representations of Linear Semisimple Groups (Trans. Am. Math. Soc., Vol. 184, 1973, pp. 223-246). Zbl0279.17001MR48 #6320
  71. [Lo] S. LOJASIEWICZ, Sur le problème de la division (Studia Math.), 8, 1959, pp. 87-136). Zbl0115.10203MR21 #5893
  72. [Lu1] G. LUSZTIG, On a Theorem of Benson and Curtis (J. Algebra Vol. 71, 1981, pp. 490-498). Zbl0465.20042MR83a:20053
  73. [Lu2] G. LUSZTIG, A Class of Irreducible Representations of a Weyl Group (Proc. Kon. Nederl. Akad., series A, Vol. 82, 1979, pp. 323-335). Zbl0435.20021MR81a:20052
  74. [Lu3] G. LUSZTIG, A class of Irreducible Representations of a Weyl Group II (Proc. Kon. Nederl. Akad., series A, Vol. 85, 1982, pp. 219-226). Zbl0511.20034MR83h:20018
  75. [Lu4] G. LUSZTIG, “Characters of Reductive Groups over a Finite field” (Annals of Mathematics Studies, No. 107, Princeton University Press, Princeton, New Jersey, 1984). Zbl0556.20033MR86j:20038
  76. [Lu5] G. LUSZTIG, Cells in Affine Weyl Groups, in : Advanced Studies in Pure Math., Vol. 6, Kinokuniya Book Store and North-Holland, 1985. Zbl0569.20032MR87h:20074
  77. [Lu6] G. LUSZTIG, Cells in Affine Weyl Groups II (J. Algebra, Vol. 109, 1987, pp. 536-548). Zbl0625.20032MR88m:20103a
  78. [Lu7] G. LUSZTIG, Leading Coefficients of Character Values of Hecke Algebras (Proc. Symp. Pure Math., Vol. 47, 1987, pp. 235-262). Zbl0657.20037MR89b:20087
  79. [LuN] G. LUSZTIG and XI NANHUA, Canonical Left Cells in Affine Weyl groups (Adv. Math., Vol. 72, 1988, pp. 284-288). Zbl0664.20028MR89m:17027
  80. [Ly] T. E. LYNCH, Generalized Whittaker Vectors and Representation Theory (Thesis, M.I.T., 1979). 
  81. [Mac] I. G. MACDONALD, Some Irreducible Representations of Weyl Groups (Bull. London Math. Soc., Vol. 4, 1972, pp. 148-150). Zbl0251.20043MR47 #8710
  82. [Mar] A. MARTINEAU, Distributions et valeurs au bord des fonctions holomorphes, œuvre de André Martineau, Paris, C.N.R.S., 1977, pp. 439-582. 
  83. [Mat1] H. MATUMOTO, Boundary Value Problems for Whittaker Functions on Real Split Semisimple Lie Groups (Duke Math. J., Vol. 53, 1986, pp. 635-676). Zbl0621.22011MR88b:22010
  84. [Mat2] H. MATUMOTO, Whittaker Vectors and Associated Varieties (Invent. Math., Vol. 89, 1987, pp. 219-224). Zbl0633.17006MR88k:17022
  85. [Mat3] H. MATUMOTO, Cohomological Hardy Space for SU (2,2),, to appear in : Adv. Stud. Pure Math., Vol. 14, Kinokuniya Book Store and North-Holland. Zbl0725.22006MR91c:22032
  86. [Mat4] H. MATUMOTO, Whittaker Vectors and the Goofman-Wallach Operators, to appear in Acta Math. Zbl0723.22019
  87. [Mat5] H. MATUMOTO, Whittaker Vectors and Whittaker Functions for real Semisimple Lie Groups (Theisis, M.I.T., 1988). 
  88. [Mœ1] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes (C. R. Acad. Sci. Paris, Vol. 303, 1986, pp. 845-848). Zbl0628.17007MR87m:17020
  89. [Mœ2] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes I, preprint, 1986. 
  90. [Mœ3] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semisimple complexes II, preprint 1986. 
  91. [MW] C. MŒGLIN and J. L. WALDSPURGER, Modèles de Whittaker dégénérés pour des groupes p-adiques (Math. Z., Vol. 196, 1987, pp. 427-452). Zbl0612.22008MR89f:22024
  92. [OW] H. OZEKI and M. WAKIMOTO, On Polarizations of Certain Homogeneous Spaces (Hiroshima Math., J., Vol. 2, 1972, pp. 445-482). Zbl0267.22011MR49 #5236a
  93. [R] F. RODIER, Modèle de Whittaker et caractères de representations, in : Non-Commutative Harmonic Analysis (Lecture Notes in Pure Mathematics, No. 466, pp. 151-171, Springer-Verlag, Berlin-Heidelberg-New York, 1981). Zbl0339.22014MR52 #14165
  94. [Sc] G. SCHIFFMANN, Intégrales d'entrelacement et fonctions de Whittaker (Bull. Soc. Math. France, Vol. 99, 1971, pp. 3-72). Zbl0223.22017MR47 #400
  95. [Sch] L. SCHWARTZ, “Théorie des distributions” Hermann, Paris, 1950. Zbl0037.07301
  96. [Sh] G. SHALIKA, The Multiplicity one Theorem for GL(n) (Ann. Math., Vol. 100, 1974, pp. 171-193). Zbl0316.12010MR50 #545
  97. [Sp1] T. A. SPRINGER, Trigonometric sums, Green Functions of finite Groups and Representations of Weyl Groups (Invent. Math., Vol. 36, 1976, pp. 173-207). Zbl0374.20054MR56 #491
  98. [Sp2] T. A. SPRINGER, A construction of Representations of Weyl Groups (Invent. Math., Vol. 44, 1978, pp. 279-293). Zbl0376.17002MR58 #11154
  99. [T] F. TREVES, “Introduction to Pseudodifferential and Fourier Integral Operators”, Vol. 1, Pseudodifferential Operators, Plenum Press, New York and London, 1980. Zbl0453.47027
  100. [Vo1] D. A. VOGAN Jr., Gelfand-Kirillov Dimension for Harish-Chandra Modules (Invent. Math., Vol. 48, 1978, pp. 75-98). Zbl0389.17002MR58 #22205
  101. [Vo2] D. A. VOGAN Jr., Ordering of the Primitive Spectrum of a Semisimple Lie Algebra (Math. Ann., Vol. 248, pp. 195-203). Zbl0414.17006MR81k:17006
  102. [Vo3] D. A. VOGAN Jr., “Representations of Real Reductive Lie Groups” (Progress in Mathematics, Birkhäuser, 1982). Zbl0469.22012
  103. [Vo4] D. A. VOGAN Jr., The Orbit Method and Primitive Ideals for Semisimple Lie Algebras (Canadian Mathematical Society Conference Proceedings, Vol. 5 “Lie Algebras and Related Topics”, 1986, pp. 381-316). Zbl0585.17008MR87k:17015
  104. [Vo5] D. A. VOGAN Jr., Irreduicible Characters of Semisimple Lei Groups IV, Character-multiplicity duality (Duke Math. J., Vol. 49, 1982, pp. 943-1073). Zbl0536.22022
  105. [W1] N. R. WALLACH, Asymptotic Expansions of Generalized Matrix Entries of Representations of Real Reductive Groups, in : Lie group Representations I (Lecture Notes Pure Math., No. 1024, pp. 287-369, Springer-Verlag, Berlin-Heidelberg-New York, 1983). Zbl0553.22005MR85g:22029
  106. [W2] N. R. WALLACH, “Real reductive Groups I”, Academic press, 1987. Zbl0666.22002
  107. [W3] N. R. WALLACH, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, to appear in : Adv. Stud. Pure Math., Vol. 14, Kinokuniya Book Store and North-Holland. Zbl0714.17016MR91d:22014
  108. [War] G. WARNER, “Harmonic Analysis on Semi-Simple Lie Groups I”, Die Drundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 188, Springer-Verlag, Berlin-Heidelberg-New York, 1972. Zbl0265.22020MR58 #16979
  109. [Y1] H. YAMASHITA, On Whittaker Vectors for Generalized Gelfand-Graev Representations of Semisimple Lie Groups (J. Math. Kyoto Univ., Vol. 26, 1986, pp. 263-298). Zbl0613.22002MR88a:22028
  110. [Y2] H. YAMASHITA, Multiplicity one Theorems for Generalized Gelfand-Graev Representations of Semi-simple Lie Groups and Whittaker Models for the Discrete Series, priprint, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.