-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations
Annales scientifiques de l'École Normale Supérieure (1990)
- Volume: 23, Issue: 2, page 311-367
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMatumoto, Hisayosi. "$C^{-\infty }$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations." Annales scientifiques de l'École Normale Supérieure 23.2 (1990): 311-367. <http://eudml.org/doc/82274>.
@article{Matumoto1990,
author = {Matumoto, Hisayosi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {irreducible admissible representation; intertwining operators; continuous Whittaker vectors; complex linear semisimple group; wave front set; Richardson orbit; dimension function; harmonic polynomials; Goldie rank polynomial},
language = {eng},
number = {2},
pages = {311-367},
publisher = {Elsevier},
title = {$C^\{-\infty \}$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations},
url = {http://eudml.org/doc/82274},
volume = {23},
year = {1990},
}
TY - JOUR
AU - Matumoto, Hisayosi
TI - $C^{-\infty }$-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 2
SP - 311
EP - 367
LA - eng
KW - irreducible admissible representation; intertwining operators; continuous Whittaker vectors; complex linear semisimple group; wave front set; Richardson orbit; dimension function; harmonic polynomials; Goldie rank polynomial
UR - http://eudml.org/doc/82274
ER -
References
top- [BV1] D. BARBASCH and D. A. VOGAN Jr., The Local Structure of Characters (J. Funct. Anal., vol. 37, 1980, pp. 27-55). Zbl0436.22011MR82e:22024
- [BV2] D. BARBASCH and D. A. VOGAN Jr., Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann. Vol. 259, 1982, pp. 153-199). Zbl0489.22010MR83m:22026
- [BV3] D. BARBASCH and D. A. VOGAN Jr., Primitive Ideals and Orbital Integrals in Complex exceptional Groups (J. Algebra, Vol. 80, 1983, pp. 350-382). Zbl0513.22009MR84h:22038
- [BV4] D. BARBASCH and D. A. VOGAN Jr., Unipotent Representations of Complex Semisimple Lie Groups (Ann, of Math., Vol. 121, 1985, pp. 41-110). Zbl0582.22007
- [BV5] D. BARBASCH and D. A. VOGAN Jr., Weyl Group Representations and nilpotent Orbits, in : P. C. TROMBI, editor, "Representation Theory of Reductive Groups" (Progress in Mathematics, Vol. 40, pp. 21-33, Birkhäuser, Boston-Basel-Stuttgart, 1983). Zbl0537.22013MR85g:22025
- [BeG] J. BERNSTEIN and S. I. GELFAND, Tensor Product of Finite and Infinite Dimensional Representations of Semisimple Lie Algebras (Compos. Math., 41, 1980, pp. 245-285). Zbl0445.17006MR82c:17003
- [BeyL] W. M. BEYNON and G. LUSZTIG, Some Numerical Results on the Characters of Exceptional Weyl Groups (Math. Soc. Camb. Phil. Soc., Vol. 84, 1978, pp. 417-426). Zbl0416.20033MR80a:20017
- [BW] A. BOREL and N. R. WALLACH, "Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups." (Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1980). Zbl0443.22010MR83c:22018
- [BoBr] W. BORHO and J.-L. BRYLINSKI, Differential Operators on Homogeneous Spaces III (Invent. Math., Vol. 80, 1985, pp. 1-68). Zbl0577.22014MR87i:22045
- [BoBrM] W. BORHO, J.-L. BRYLINSKI and R. D. MACPHERSON, Nilpotent Orbits, Primitive Ideals, and Characteristic Classes, preprint, Max-Planck-Institut für Mathematik, Bonn, January, 1988.
- [BoKr] W. BORHO and H. KRAFT, Uber primitive ideale in der Einhüllenden einer halbeinfachen Lie-Algebra (Invent. Math., Vol. 39, 1977, pp. 1-53). Zbl0327.17002
- [BoM1] W. BORHO and R. D. MACPHERSON, Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes (C.R. Acad. Sci. Paris, T. 292, 1981, pp. 707-710). Zbl0467.20036MR82f:14002
- [BoM2] W. BORHO and R. D. MACPHERSON, Partial Resolutions of Nilpotent Varieties (Astérisque, Vol. 101-102, 1983, pp. 23-74). Zbl0576.14046MR85j:14087
- [Ca1] W. CASSELMAN, A letter to Harish-Chandra, November 30, 1982.
- [Ca2] W. CASSELMAN, Jacquet Modules for Real Reductive groups, in : Proceedings of the International Congress of Mathematics, Helsinki, 1978, pp. 557-563. MR83h:22025
- [Ca3] W. CASSELMAN, Canonical Extensions of Harish-Chandra Modules to Representations of G, preprint.
- [CD] N. CONZE-BERLINE and M. DUFLO, Sur les représentations induites des groupes semi-simples complexes (Compos. Math., Vol. 34, 1977, pp. 307-336). Zbl0389.22016MR55 #12872
- [D1] M. DUFLO, Représentations irréductibles des groupes semi-simples complexes, pp. 26-88 in : Analyse Harmonique sur les Groupes de Lie (Lect. Notes Math., No. 497, Springer-Verlag, Berlin-Heidelberg-New York, 1975). Zbl0315.22008MR53 #3198
- [D2] M. DUFLO, Sur la classifications des idéaux primitifs dans l'algèbre de Lie semi-simple (Ann. Math., Vol. 1977, pp. 107-120). Zbl0346.17011MR55 #3013
- [D3] M. DUFLO, Polynômes de Vogan pour SL(n, C), pp. 64-76 in : Non-Commutative Harmonic Analysis (Lecture Notes in Mathematics, No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0414.22018MR81b:22015
- [GJ] O. GABBER and A. JOSEPH, Oh the Bernstein-Gelfand-Gelfand Resolution and the Duflo sum Formula (Compos. Math., Vol. 43, 1981, pp. 107-131). Zbl0461.17004MR82k:17009
- [GG1] I. M. GELFAND and M. I. GRAEV, Categories of Group Representations and the Problem of Classifying Irreducible Representations (Soviet Math. Dokl., Vol. 3, 1962, pp. 1382-1385).
- [GG2] I. M. GELFAND and M. I. GRAEV, Construction of Irreducible Representations of Simple Algebraic Groups Over a Finite field (Soviet Math. Dokl., Vol. 3, 1962, pp. 1646-1649). Zbl0119.26902MR26 #6271
- [Gi] V. GINSBURG, G-modules, Springer's Representations and bivariant Chern Classes (Adv. Math., Vol. 61, 1986, pp. 1-48). Zbl0601.22008MR87k:17014
- [Go] R. GOODMAN, Horospherical Functions on Symmetric Spaces (Canadian Matehatical Society Conference Proceedings Vol. 1, 1981, pp. 125-133). Zbl0545.43008
- [GW] R. GOODMAN and N. R. WALLACH, Whittaker Vectors and Conical Vectors (J. Funct. Anal., Vol. 39, 1980, pp. 199-279). Zbl0475.22010MR82i:22018
- [GorM] M. GORESKY and R. MACPHERSON, "Stratified Morse Theory", Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1980. Zbl0526.57022
- [Ha1] M. HASHIZUME, Whittaker models for semisimple Lie groups (Jpn J. Math., Vol. 5, 1979, pp. 349-401). Zbl0506.22016MR82g:10048
- [Ha2] M. HASHIZUME, Whittaker Models for Representations with Highest Weights, in : Lectures on Harmonic analysis on Lie Groups and Related Topics (Strasbourg, 1979, pp. 45-50, Lect. Math., Vol. 14, Kinokuniya Book Store, Tokyo, 1982). Zbl0596.22005
- [Ha3] M. HASHIZUME, Whittaker Functions on Semisimple Lie Groups (Hiroshima Math. J., Vol. 13, 1982, pp. 259-293). Zbl0524.43005MR84d:22018
- [He] S. HELGASON, A Duality for Symmetric Spaces with Applications to Group Representations (Adv. Math., Vol. 5, 1970, pp. 1-154). Zbl0209.25403MR41 #8587
- [HS] P. J. HILTON and U. STAMMBACH, "A Course in Homological Algebra", GTM No. 4, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0238.18006
- [Hi1] H. HIRONAKA, Resolution of Singularities of an algebraic geometry over a field of Characteristic 0 (Ann. Math., Vol. 79, 1964, pp. 109-326). Zbl0122.38603MR33 #7333
- [Hi2] H. HIRONAKA, Subanalytic sets, in : "Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. AKIZUKI", pp. 453-493, Kinokuniya Book Store, Tokyo, 1973. Zbl0297.32008MR51 #13275
- [Hör] L. HÖRMANDER, Fourier Integral Operators I (Acta Math., Vol. 127, 1971, pp. 79-183). Zbl0212.46601MR52 #9299
- [Hot1] R. HOTTA, On Springer's Representations (J. Fac. Sci. Univ. Tokyo, IA Vol. 28, 1982, pp. 863-876). Zbl0584.20033MR83h:20038
- [Hot2] R. HOTTA, On Joseph's Construction of Weyl Group Representations (Tohoky Math. J., Vol. 36, 1984, pp. 49-74). Zbl0545.20029MR86h:20061
- [Hot3] R. HOTTA, A local formula for Springer's Representation (Adv. Stud. Pure Math., Vol. 6, 1985, pp. 127-138). Zbl0571.20033MR87b:20059
- [HotK] R. HOTTA and MASAKI KASHIWARA, The Invariant Holonomic System on a Semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). Zbl0538.22013MR87i:22041
- [How] R. HOWE, Wave Front Sets of Representations of Lie Groups, in "Automorphic Forms, Representation Theory, and Arithmetic", Bombay, 1981. Zbl0494.22010MR83c:22014
- [Ja] H. JACQUET, Fonction de Whittaker associées aux groupes de Chevalley (Bull. Soc. Math. France, Vol. 95, 1967, pp. 243-309). Zbl0155.05901MR42 #6158
- [JL] H. JACQUET and R. P. LANGLANDS, "Automorphic Form on GL (2)" (Lect. Notes Math., No. 114, Springer-Verlag, Berlin-Heidelberg-New York). Zbl0236.12010MR53 #5481
- [Jo1] A. JOSEPH, On the Annihilators of the Simple Subquotients of the Principal series (Ann. Scient. Éc. Norm. Sup. (4), Vol. 10, 1977, pp. 419-440). Zbl0386.17004MR58 #809
- [Jo2] A. JOSEPH, Dixmier's problem for Verma and Principal Series Submodules (J. London Math. Soc., (2), Vol. 20, 1979, pp. 193-204). Zbl0421.17005MR81c:17016
- [Jo3] A. JOSEPH, W-module Structures in the Primitive Spectrum of the Enveloping Algebra of a Semisimple Lie Algebra, pp. 116-135 in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0422.17004MR80k:17007
- [Jo4] A. JOSEPH, Towards the Jantzen conjecture I (Compos. Math., Vol. 40, 1980, pp. 35-67). Zbl0424.17004MR81m:17013a
- [Jo5] A. JOSEPH, Towards the Jantzen conjecture II (Compos. Math., Vol. 40, 1980, pp. 69-78). Zbl0424.17005MR81m:17013a
- [Jo6] A. JOSEPH, Kostant's Problem, Goldie rank and Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
- [Jo7] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra I (J. Algebra, Vol. 65, 1980, pp. 269-283). Zbl0441.17004MR82f:17009
- [Jo8] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lei Algebra II (J. Algebra, Vol. 65, 1980, pp. 284-306). Zbl0441.17004MR82f:17009
- [Jo9] A. JOSEPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra III (J. Algebra, Vol. 73, 1981, pp. 295-326). Zbl0482.17002MR83k:17010
- [Jo10] A. JOSEPH, Towards the Jantzen conjecture III (Compos. Math., Vol. 41, 1981, pp. 23-30). Zbl0446.17005MR81m:17013b
- [Jo11] A. JOSEPH, On the Classification of Primitive Ideals in the enveloping Algebra of a samisimple Lie Algebra, pp. 30-76 in : Lect. Notes Math., No. 1024, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0518.17003MR85b:17008
- [Jo12] A. JOSEPH, On the Cyclicity of vectors Associated with Duflo Involutions, pp. 145-188 in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 1243, Springer-Verlag, Berlin-Heidelberg-New York, 1986). Zbl0621.17006
- [Kas] M. KASHIWARA, The Riemann-Hilbert Problem for Holonomic Systems, Publ. R.I.M.S., Kyoto Univ., Vol. 20, 1984, pp. 319-365. Zbl0566.32023MR86j:58142
- [KV1] M. KASHIWARA and M. VERGNE, Functions on the Shilov boundary of the Generalized half plane, in : Non-Commutative Harmonic Analysis (Lecture Notes in Mathematics, No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0416.22006MR81e:22022
- [KV2] M. KASHIWARA and M. VERGNE, K-types and the Singular Spectrum, in : Non-Commutative Harmonic Analysis (Lect. Notes Math., No. 728, Springer-Verlag, Berlin-Heidelberg-New York, 1979). Zbl0411.22015MR81m:22022
- [KT] M. KASHIWARA and T. TANISAKI, The Characteristic cycles of Holomomic Systems on a Flag Manifold-related to the Weyl Group Algebra (Invent. Math., Vol. 77, 1984, pp. 185-198). Zbl0611.22008MR86m:17015
- [Kaw1] N. KAWANAKA, Generalized Gelfand-Graev Representations and Ennola Duality, in “Algebraic Groups and Related Topics” (Adv. Stud. Pure Math., Vol. 6, Kinokuniya Book Store and North-Holland, 1985, pp. 175-206). Zbl0573.20038MR87e:20075
- [Kaw2] N. KAWANAKA, Generalized Gelfand-Graev Representations of Exceptional Simple Algebraic Groups over a Finite field I (Invent. Math., Vol. 84, 1986, pp. 575-616). Zbl0596.20028MR88a:20058
- [Kaw3] N. KAWANAKA, Shintani lifting and Generalized Gelfand-Graev Representations (Proc. Symp. Pure Math., Vol. 47, 1987, pp. 147-163). Zbl0654.20046MR89h:22037
- [KL1] D. A. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke Algebras (Invent. Math. Vol. 53, 1979, pp. 165-184). Zbl0499.20035MR81j:20066
- [KL2] D. A. KAZHDAN and G. LUSZTIG, A topological Approach to Springer's Representations (Adv. Math., Vol. 38, 1980, pp. 222-228). Zbl0458.20035MR82f:20076
- [Ki1] D. R. KING, The Primitive Ideals assoated to Harish-Chandra Modules and Certain harmonic Polynomials. (Thesis, M.I.T., 1979).
- [Ki2] D. R. KING, The Character Polynomial of the Annihilator of an Irreducible Harish-Chandra Module (Am. J. Math., Vol. 103, 1981, pp. 1195-1240). Zbl0486.17003MR83d:22010a
- [Kn] A. W. KNAPP, “Representation Theory of Semisimple Groups, An Overview Based on Examples”, Princeton Mathematical series 36, Princeton University Press, Lawrenceville, New Jersey, 1986. Zbl0604.22001MR87j:22022
- [Ko1] B. KOSTANT, Lie algebra Cohomology and the Generalized Borel-Weil Theorem (Ann. Math., Vol. 48, 1978, pp. 101-184). MR80b:22020
- [Ko2] B. KOSTANT, On Whittaker Vectors and Representation Theory (Invent. Math., Vol. 48, 1978, pp. 101-184). Zbl0405.22013MR80b:22020
- [Le] J. LEPOWSKI, Generalized Verma Modules, the Cartan-Helgason Theorem, and the Harish-Chandra Homomorphism (J. Algebra, Vol. 49, 1977, pp. 470-495). Zbl0381.17005MR57 #3312
- [LeW] J. LEPOWSKI and N. R. WALLACH, Finite- and Infinite-dimensional Representations of Linear Semisimple Groups (Trans. Am. Math. Soc., Vol. 184, 1973, pp. 223-246). Zbl0279.17001MR48 #6320
- [Lo] S. LOJASIEWICZ, Sur le problème de la division (Studia Math.), 8, 1959, pp. 87-136). Zbl0115.10203MR21 #5893
- [Lu1] G. LUSZTIG, On a Theorem of Benson and Curtis (J. Algebra Vol. 71, 1981, pp. 490-498). Zbl0465.20042MR83a:20053
- [Lu2] G. LUSZTIG, A Class of Irreducible Representations of a Weyl Group (Proc. Kon. Nederl. Akad., series A, Vol. 82, 1979, pp. 323-335). Zbl0435.20021MR81a:20052
- [Lu3] G. LUSZTIG, A class of Irreducible Representations of a Weyl Group II (Proc. Kon. Nederl. Akad., series A, Vol. 85, 1982, pp. 219-226). Zbl0511.20034MR83h:20018
- [Lu4] G. LUSZTIG, “Characters of Reductive Groups over a Finite field” (Annals of Mathematics Studies, No. 107, Princeton University Press, Princeton, New Jersey, 1984). Zbl0556.20033MR86j:20038
- [Lu5] G. LUSZTIG, Cells in Affine Weyl Groups, in : Advanced Studies in Pure Math., Vol. 6, Kinokuniya Book Store and North-Holland, 1985. Zbl0569.20032MR87h:20074
- [Lu6] G. LUSZTIG, Cells in Affine Weyl Groups II (J. Algebra, Vol. 109, 1987, pp. 536-548). Zbl0625.20032MR88m:20103a
- [Lu7] G. LUSZTIG, Leading Coefficients of Character Values of Hecke Algebras (Proc. Symp. Pure Math., Vol. 47, 1987, pp. 235-262). Zbl0657.20037MR89b:20087
- [LuN] G. LUSZTIG and XI NANHUA, Canonical Left Cells in Affine Weyl groups (Adv. Math., Vol. 72, 1988, pp. 284-288). Zbl0664.20028MR89m:17027
- [Ly] T. E. LYNCH, Generalized Whittaker Vectors and Representation Theory (Thesis, M.I.T., 1979).
- [Mac] I. G. MACDONALD, Some Irreducible Representations of Weyl Groups (Bull. London Math. Soc., Vol. 4, 1972, pp. 148-150). Zbl0251.20043MR47 #8710
- [Mar] A. MARTINEAU, Distributions et valeurs au bord des fonctions holomorphes, œuvre de André Martineau, Paris, C.N.R.S., 1977, pp. 439-582.
- [Mat1] H. MATUMOTO, Boundary Value Problems for Whittaker Functions on Real Split Semisimple Lie Groups (Duke Math. J., Vol. 53, 1986, pp. 635-676). Zbl0621.22011MR88b:22010
- [Mat2] H. MATUMOTO, Whittaker Vectors and Associated Varieties (Invent. Math., Vol. 89, 1987, pp. 219-224). Zbl0633.17006MR88k:17022
- [Mat3] H. MATUMOTO, Cohomological Hardy Space for SU (2,2),, to appear in : Adv. Stud. Pure Math., Vol. 14, Kinokuniya Book Store and North-Holland. Zbl0725.22006MR91c:22032
- [Mat4] H. MATUMOTO, Whittaker Vectors and the Goofman-Wallach Operators, to appear in Acta Math. Zbl0723.22019
- [Mat5] H. MATUMOTO, Whittaker Vectors and Whittaker Functions for real Semisimple Lie Groups (Theisis, M.I.T., 1988).
- [Mœ1] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes (C. R. Acad. Sci. Paris, Vol. 303, 1986, pp. 845-848). Zbl0628.17007MR87m:17020
- [Mœ2] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes I, preprint, 1986.
- [Mœ3] C. MŒGLIN, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semisimple complexes II, preprint 1986.
- [MW] C. MŒGLIN and J. L. WALDSPURGER, Modèles de Whittaker dégénérés pour des groupes p-adiques (Math. Z., Vol. 196, 1987, pp. 427-452). Zbl0612.22008MR89f:22024
- [OW] H. OZEKI and M. WAKIMOTO, On Polarizations of Certain Homogeneous Spaces (Hiroshima Math., J., Vol. 2, 1972, pp. 445-482). Zbl0267.22011MR49 #5236a
- [R] F. RODIER, Modèle de Whittaker et caractères de representations, in : Non-Commutative Harmonic Analysis (Lecture Notes in Pure Mathematics, No. 466, pp. 151-171, Springer-Verlag, Berlin-Heidelberg-New York, 1981). Zbl0339.22014MR52 #14165
- [Sc] G. SCHIFFMANN, Intégrales d'entrelacement et fonctions de Whittaker (Bull. Soc. Math. France, Vol. 99, 1971, pp. 3-72). Zbl0223.22017MR47 #400
- [Sch] L. SCHWARTZ, “Théorie des distributions” Hermann, Paris, 1950. Zbl0037.07301
- [Sh] G. SHALIKA, The Multiplicity one Theorem for GL(n) (Ann. Math., Vol. 100, 1974, pp. 171-193). Zbl0316.12010MR50 #545
- [Sp1] T. A. SPRINGER, Trigonometric sums, Green Functions of finite Groups and Representations of Weyl Groups (Invent. Math., Vol. 36, 1976, pp. 173-207). Zbl0374.20054MR56 #491
- [Sp2] T. A. SPRINGER, A construction of Representations of Weyl Groups (Invent. Math., Vol. 44, 1978, pp. 279-293). Zbl0376.17002MR58 #11154
- [T] F. TREVES, “Introduction to Pseudodifferential and Fourier Integral Operators”, Vol. 1, Pseudodifferential Operators, Plenum Press, New York and London, 1980. Zbl0453.47027
- [Vo1] D. A. VOGAN Jr., Gelfand-Kirillov Dimension for Harish-Chandra Modules (Invent. Math., Vol. 48, 1978, pp. 75-98). Zbl0389.17002MR58 #22205
- [Vo2] D. A. VOGAN Jr., Ordering of the Primitive Spectrum of a Semisimple Lie Algebra (Math. Ann., Vol. 248, pp. 195-203). Zbl0414.17006MR81k:17006
- [Vo3] D. A. VOGAN Jr., “Representations of Real Reductive Lie Groups” (Progress in Mathematics, Birkhäuser, 1982). Zbl0469.22012
- [Vo4] D. A. VOGAN Jr., The Orbit Method and Primitive Ideals for Semisimple Lie Algebras (Canadian Mathematical Society Conference Proceedings, Vol. 5 “Lie Algebras and Related Topics”, 1986, pp. 381-316). Zbl0585.17008MR87k:17015
- [Vo5] D. A. VOGAN Jr., Irreduicible Characters of Semisimple Lei Groups IV, Character-multiplicity duality (Duke Math. J., Vol. 49, 1982, pp. 943-1073). Zbl0536.22022
- [W1] N. R. WALLACH, Asymptotic Expansions of Generalized Matrix Entries of Representations of Real Reductive Groups, in : Lie group Representations I (Lecture Notes Pure Math., No. 1024, pp. 287-369, Springer-Verlag, Berlin-Heidelberg-New York, 1983). Zbl0553.22005MR85g:22029
- [W2] N. R. WALLACH, “Real reductive Groups I”, Academic press, 1987. Zbl0666.22002
- [W3] N. R. WALLACH, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, to appear in : Adv. Stud. Pure Math., Vol. 14, Kinokuniya Book Store and North-Holland. Zbl0714.17016MR91d:22014
- [War] G. WARNER, “Harmonic Analysis on Semi-Simple Lie Groups I”, Die Drundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 188, Springer-Verlag, Berlin-Heidelberg-New York, 1972. Zbl0265.22020MR58 #16979
- [Y1] H. YAMASHITA, On Whittaker Vectors for Generalized Gelfand-Graev Representations of Semisimple Lie Groups (J. Math. Kyoto Univ., Vol. 26, 1986, pp. 263-298). Zbl0613.22002MR88a:22028
- [Y2] H. YAMASHITA, Multiplicity one Theorems for Generalized Gelfand-Graev Representations of Semi-simple Lie Groups and Whittaker Models for the Discrete Series, priprint, 1987.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.