On the birational automorphism groups of algebraic varieties

Masaki Hanamura

Compositio Mathematica (1987)

  • Volume: 63, Issue: 1, page 123-142
  • ISSN: 0010-437X

How to cite

top

Hanamura, Masaki. "On the birational automorphism groups of algebraic varieties." Compositio Mathematica 63.1 (1987): 123-142. <http://eudml.org/doc/89847>.

@article{Hanamura1987,
author = {Hanamura, Masaki},
journal = {Compositio Mathematica},
keywords = {group of birational automorphisms; automorphism group scheme; terminal minimal birational model},
language = {eng},
number = {1},
pages = {123-142},
publisher = {Martinus Nijhoff Publishers},
title = {On the birational automorphism groups of algebraic varieties},
url = {http://eudml.org/doc/89847},
volume = {63},
year = {1987},
}

TY - JOUR
AU - Hanamura, Masaki
TI - On the birational automorphism groups of algebraic varieties
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 1
SP - 123
EP - 142
LA - eng
KW - group of birational automorphisms; automorphism group scheme; terminal minimal birational model
UR - http://eudml.org/doc/89847
ER -

References

top
  1. 1 T. Fujita: Zariski decomposition and canonical rings of elliptic threefolds. Preprint (1984). Zbl0627.14031MR816221
  2. 2 A. Grothendieck: Eléments de Géométrie Algébrique. Publ. Math. I.H.E.S.4, 8, 11, 17, 20, 24, 28, 32. 
  3. 3 A. Grothendieck: Fondements de la Géométrie Algébrique, Sem. Bourbaki1957-62. Secrétariat Math., Paris (1962). Zbl0239.14002MR146040
  4. 4 S. Iitaka: Algebraic Geometry. Graduate Texts in Math., Vol. 76. Springer-Verlag, New York (1982). Zbl0491.14006MR637060
  5. 5 Y. Kawamata: The cone of curves of algebraic varieties. Ann. Math.119 (1984) 603-633. Zbl0544.14009MR744865
  6. 6 Y. Kawamata: Pluricanonical systems on minimal algebraic varieties. Invent. Math.79 (1985) 567-588. Zbl0593.14010MR782236
  7. 7 Y. Kawamata: Minimal models and the Kodaira dimension of algebraic fiber spaces. Preprint (1985). Zbl0589.14014MR814013
  8. 8 J. Kollár: Higher direct images of dualizing sheaves, II. Preprint (1985). Zbl0605.14014MR847955
  9. 9 H. Matsumura: On algebraic groups of birational transformations. Lincei. Rend. Sc. fis. mat. e nat. Vol. XXXIV (1963). Zbl0134.16601MR159825
  10. 10 S. Mori: Threefolds whose canonical bundles are not numerically effective. Ann. Math.116 (1982) 177-212. Zbl0557.14021MR662120
  11. 11 M. Reid: Minimal models of canonical 3-folds. Advanced Studies in Pure Math.1 (1983) 131-180. Zbl0558.14028MR715649
  12. 12 M. Rosenlicht: Some basic theorems on algebraic groups. Amer. J. Math.78 (1956) 401-443. Zbl0073.37601MR82183
  13. 13 K. Ueno: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Math. 439. Springer Verlag, Berlin (1975). Zbl0299.14007MR506253
  14. 14 A. Weil: On algebraic groups of transformations. Amer. J. Math.77 (1955) 355-391. Zbl0065.14201MR74083
  15. 15 M. Demazure: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. scient. Ec. Norm. Sup.4, 3 (1971) 507-588. Zbl0223.14009MR284446
  16. 16 D. Mumford: Abelian Varieties. Oxford University Press (1970) Zbl0223.14022MR282985
  17. 17 D. Mumford: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete34. Springer-Verlag (1982). Zbl0147.39304MR719371
  18. 18 A. Beauville: Some remarks on Kähler manifolds with c 1 = 0. In: Classification of Algebraic and Analytic Manifolds. Birkhauser (1983) 1-26. Zbl0537.53057MR728605
  19. 19 R. Hartshorne: Stable reflexive sheaves. Math. Ann.254 (1980) 121-176. Zbl0431.14004MR597077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.