Towards a Mori theory on compact Kähler threefolds III

Thomas Peternell

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 3, page 339-356
  • ISSN: 0037-9484

Abstract

top
Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e. K X is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of K X is generated by global sections); unless X is simple. “Simple“ means that there is no compact subvariety through the very general point of X and X not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless X is simple with Kodaira dimension - .

How to cite

top

Peternell, Thomas. "Towards a Mori theory on compact Kähler threefolds III." Bulletin de la Société Mathématique de France 129.3 (2001): 339-356. <http://eudml.org/doc/272301>.

@article{Peternell2001,
abstract = {Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e.$K_X$ is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of $K_X$ is generated by global sections); unless $X$ is simple. “Simple“ means that there is no compact subvariety through the very general point of $X$ and $X$ not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless $X$ is simple with Kodaira dimension $- \infty .$},
author = {Peternell, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {kähler threefolds; abundance; rational curves; Kodaira dimension},
language = {eng},
number = {3},
pages = {339-356},
publisher = {Société mathématique de France},
title = {Towards a Mori theory on compact Kähler threefolds III},
url = {http://eudml.org/doc/272301},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Peternell, Thomas
TI - Towards a Mori theory on compact Kähler threefolds III
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 339
EP - 356
AB - Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e.$K_X$ is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of $K_X$ is generated by global sections); unless $X$ is simple. “Simple“ means that there is no compact subvariety through the very general point of $X$ and $X$ not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless $X$ is simple with Kodaira dimension $- \infty .$
LA - eng
KW - kähler threefolds; abundance; rational curves; Kodaira dimension
UR - http://eudml.org/doc/272301
ER -

References

top
  1. [1] F. Campana & T. Peternell – « Towards a Mori theory on compact Kähler threefolds, I », Math. Nachr.187 (1997), p. 29–59. Zbl0889.32027MR1471137
  2. [2] —, « Complex threefolds with non-trivial holomorphic 2 -forms », J. Alg. Geom.9 (2000), p. 223–264. Zbl0994.32016MR1735771
  3. [3] J.-P. Demailly – « Frobenius integrability of certain holomorphic p -forms », Preprint, 2000, to appear in a volume in honour of H. Grauert. MR1922099
  4. [4] J.-P. Demailly, T. Peternell & M. Schneider – « Compact complex manifolds with numerically effective tangent bundles », J. Alg. Geom.3 (1994), p. 295–345. Zbl0827.14027MR1257325
  5. [5] —, « Compact Kähler manifolds with hermitian semipositive anticanonical bundle », Comp. Math.101 (1996), p. 217–224. Zbl1008.32008MR1389367
  6. [6] A. Fujiki – « On the structure of compact complex manifolds in class 𝒞 », Adv. Stud. Pure Math., vol. 1, 1983, p. 231–302. Zbl0513.32027MR715653
  7. [7] T. Fujita – « Kähler fiber spaces over curves », J. Math. Soc. Japan30 (1978), p. 779–794. Zbl0393.14006MR513085
  8. [8] M. Hanamura – « On the birational automorphism groups of algebraic varieties », Comp. Math.63 (1987), p. 123–142. Zbl0655.14007MR906382
  9. [9] R. Hartshorne – Algebraic geometry, Graduate Texts in Math., vol. 52, Springer, 1977. Zbl0367.14001MR463157
  10. [10] Y. Kawamata – « Characterisation of abelian varieties », Comp. Math.43 (1981), p. 253–276. Zbl0471.14022MR622451
  11. [11] —, « Pluricanonical systems on minimal algebraic varieties », Inv. Math.79 (1985), p. 567–588. Zbl0593.14010MR782236
  12. [12] —, « Crepant blowing ups of threedimensional canonical singularities and applications to degenerations of surfaces », Ann. Math.119 (1988), p. 603–633. Zbl0651.14005
  13. [13] —, « Abundance theorem for minimal threefolds », Inv. Math.108 (1992), p. 229–246. Zbl0777.14011MR1161091
  14. [14] Y. Kawamata & E. Viehweg – « On a characterisation of an abelian variety in the classification theory of algebraic varieties », Comp. Math.41 (1980), p. 355–359. Zbl0417.14033MR589087
  15. [15] S. Kebekus, T. Peternell, A. Sommese & J. Wisniewski – « Projective contact manifolds », Inv. Math.142 (2000), p. 1–15. Zbl0994.53024MR1784795
  16. [16] J. Kollár – « Flops », Nagoya Math. J.113 (1989), p. 15–36. Zbl0645.14004MR986434
  17. [17] —, Rational curves on algebraic varieties, Erg. d. Math., vol. 32, Springer, 1996. MR1440180
  18. [18] C. LeBrun – « Fano manifolds, contact structures and quaternionic geometry », Int. J. Math.6 (1995), p. 419–437. Zbl0835.53055MR1327157
  19. [19] Y. Miyaoka – « Abundance conjecture for threefolds: ν = 1 case », Comp. Math.68 (1988), p. 203–220. Zbl0681.14019MR966580
  20. [20] S. Mori – « Threefolds whose canonical bundles are not numerically effective », Ann. Math.116 (1982), p. 133–176. Zbl0557.14021MR662120
  21. [21] —, « Flip theorem and the existence of minimal models for 3-folds », J. Amer. Math. Soc.1 (1988), p. 117–253. Zbl0649.14023MR924704
  22. [22] N. Nakayama – « The lower semi-continuity of the plurigenera of complex varieties », Adv. Stud. Pure Math., vol. 10, 1987, p. 551–590. Zbl0649.14003MR946250
  23. [23] T. Peternell – « Towards a Mori theory on compact Kähler threefolds, II », Math. Ann.311 (1998), p. 729–764. Zbl0919.32016MR1637984
  24. [24] M. Reid – « Canonical threefolds », Géométrie algébrique, Angers, vol. 1, Sijthoff and Noordhoff, p. 273–310. Zbl0451.14014MR605348
  25. [25] —, « Minimal models of threefolds », Adv. Stud. Pure Math., vol. 1, 1983, p. 131–180. 
  26. [26] —, « Singular del Pezzo surfaces », Publ. RIMS30 (1994), p. 695–728. 
  27. [27] K. Ueno – « On compact analytic threefolds with non-trivial Albanese torus », Math. Ann.278 (1987), p. 41–70. Zbl0628.32037MR909217
  28. [28] E. Viehweg – « Klassifikationstheorie algebraischer Varietäten der Dimension 3 », Comp. Math.41 (1980), p. 361–400. Zbl0414.14017MR589088
  29. [29] Y. Ye – « A note on complex projective threefolds admitting holomorphic contact structures », Inv. Math.115 (1994), p. 311–314. Zbl0801.14014MR1258907

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.