Towards a Mori theory on compact Kähler threefolds III

Thomas Peternell

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 3, page 339-356
  • ISSN: 0037-9484

Abstract

top
Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e. K X is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of K X is generated by global sections); unless X is simple. “Simple“ means that there is no compact subvariety through the very general point of X and X not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless X is simple with Kodaira dimension - .

How to cite

top

Peternell, Thomas. "Towards a Mori theory on compact Kähler threefolds III." Bulletin de la Société Mathématique de France 129.3 (2001): 339-356. <http://eudml.org/doc/272301>.

@article{Peternell2001,
abstract = {Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e.$K_X$ is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of $K_X$ is generated by global sections); unless $X$ is simple. “Simple“ means that there is no compact subvariety through the very general point of $X$ and $X$ not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless $X$ is simple with Kodaira dimension $- \infty .$},
author = {Peternell, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {kähler threefolds; abundance; rational curves; Kodaira dimension},
language = {eng},
number = {3},
pages = {339-356},
publisher = {Société mathématique de France},
title = {Towards a Mori theory on compact Kähler threefolds III},
url = {http://eudml.org/doc/272301},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Peternell, Thomas
TI - Towards a Mori theory on compact Kähler threefolds III
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 339
EP - 356
AB - Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e.$K_X$ is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of $K_X$ is generated by global sections); unless $X$ is simple. “Simple“ means that there is no compact subvariety through the very general point of $X$ and $X$ not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless $X$ is simple with Kodaira dimension $- \infty .$
LA - eng
KW - kähler threefolds; abundance; rational curves; Kodaira dimension
UR - http://eudml.org/doc/272301
ER -

References

top
  1. [1] F. Campana & T. Peternell – « Towards a Mori theory on compact Kähler threefolds, I », Math. Nachr.187 (1997), p. 29–59. Zbl0889.32027MR1471137
  2. [2] —, « Complex threefolds with non-trivial holomorphic 2 -forms », J. Alg. Geom.9 (2000), p. 223–264. Zbl0994.32016MR1735771
  3. [3] J.-P. Demailly – « Frobenius integrability of certain holomorphic p -forms », Preprint, 2000, to appear in a volume in honour of H. Grauert. MR1922099
  4. [4] J.-P. Demailly, T. Peternell & M. Schneider – « Compact complex manifolds with numerically effective tangent bundles », J. Alg. Geom.3 (1994), p. 295–345. Zbl0827.14027MR1257325
  5. [5] —, « Compact Kähler manifolds with hermitian semipositive anticanonical bundle », Comp. Math.101 (1996), p. 217–224. Zbl1008.32008MR1389367
  6. [6] A. Fujiki – « On the structure of compact complex manifolds in class 𝒞 », Adv. Stud. Pure Math., vol. 1, 1983, p. 231–302. Zbl0513.32027MR715653
  7. [7] T. Fujita – « Kähler fiber spaces over curves », J. Math. Soc. Japan30 (1978), p. 779–794. Zbl0393.14006MR513085
  8. [8] M. Hanamura – « On the birational automorphism groups of algebraic varieties », Comp. Math.63 (1987), p. 123–142. Zbl0655.14007MR906382
  9. [9] R. Hartshorne – Algebraic geometry, Graduate Texts in Math., vol. 52, Springer, 1977. Zbl0367.14001MR463157
  10. [10] Y. Kawamata – « Characterisation of abelian varieties », Comp. Math.43 (1981), p. 253–276. Zbl0471.14022MR622451
  11. [11] —, « Pluricanonical systems on minimal algebraic varieties », Inv. Math.79 (1985), p. 567–588. Zbl0593.14010MR782236
  12. [12] —, « Crepant blowing ups of threedimensional canonical singularities and applications to degenerations of surfaces », Ann. Math.119 (1988), p. 603–633. Zbl0651.14005
  13. [13] —, « Abundance theorem for minimal threefolds », Inv. Math.108 (1992), p. 229–246. Zbl0777.14011MR1161091
  14. [14] Y. Kawamata & E. Viehweg – « On a characterisation of an abelian variety in the classification theory of algebraic varieties », Comp. Math.41 (1980), p. 355–359. Zbl0417.14033MR589087
  15. [15] S. Kebekus, T. Peternell, A. Sommese & J. Wisniewski – « Projective contact manifolds », Inv. Math.142 (2000), p. 1–15. Zbl0994.53024MR1784795
  16. [16] J. Kollár – « Flops », Nagoya Math. J.113 (1989), p. 15–36. Zbl0645.14004MR986434
  17. [17] —, Rational curves on algebraic varieties, Erg. d. Math., vol. 32, Springer, 1996. MR1440180
  18. [18] C. LeBrun – « Fano manifolds, contact structures and quaternionic geometry », Int. J. Math.6 (1995), p. 419–437. Zbl0835.53055MR1327157
  19. [19] Y. Miyaoka – « Abundance conjecture for threefolds: ν = 1 case », Comp. Math.68 (1988), p. 203–220. Zbl0681.14019MR966580
  20. [20] S. Mori – « Threefolds whose canonical bundles are not numerically effective », Ann. Math.116 (1982), p. 133–176. Zbl0557.14021MR662120
  21. [21] —, « Flip theorem and the existence of minimal models for 3-folds », J. Amer. Math. Soc.1 (1988), p. 117–253. Zbl0649.14023MR924704
  22. [22] N. Nakayama – « The lower semi-continuity of the plurigenera of complex varieties », Adv. Stud. Pure Math., vol. 10, 1987, p. 551–590. Zbl0649.14003MR946250
  23. [23] T. Peternell – « Towards a Mori theory on compact Kähler threefolds, II », Math. Ann.311 (1998), p. 729–764. Zbl0919.32016MR1637984
  24. [24] M. Reid – « Canonical threefolds », Géométrie algébrique, Angers, vol. 1, Sijthoff and Noordhoff, p. 273–310. Zbl0451.14014MR605348
  25. [25] —, « Minimal models of threefolds », Adv. Stud. Pure Math., vol. 1, 1983, p. 131–180. 
  26. [26] —, « Singular del Pezzo surfaces », Publ. RIMS30 (1994), p. 695–728. 
  27. [27] K. Ueno – « On compact analytic threefolds with non-trivial Albanese torus », Math. Ann.278 (1987), p. 41–70. Zbl0628.32037MR909217
  28. [28] E. Viehweg – « Klassifikationstheorie algebraischer Varietäten der Dimension 3 », Comp. Math.41 (1980), p. 361–400. Zbl0414.14017MR589088
  29. [29] Y. Ye – « A note on complex projective threefolds admitting holomorphic contact structures », Inv. Math.115 (1994), p. 311–314. Zbl0801.14014MR1258907

NotesEmbed ?

top

You must be logged in to post comments.