The Milnor fiber and the zeta function of the singularities of type
Compositio Mathematica (1991)
- Volume: 79, Issue: 1, page 63-97
- ISSN: 0010-437X
Access Full Article
topHow to cite
topNémethi, András. "The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$." Compositio Mathematica 79.1 (1991): 63-97. <http://eudml.org/doc/90099>.
@article{Némethi1991,
author = {Némethi, András},
journal = {Compositio Mathematica},
keywords = {complete intersection; homotopy type},
language = {eng},
number = {1},
pages = {63-97},
publisher = {Kluwer Academic Publishers},
title = {The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$},
url = {http://eudml.org/doc/90099},
volume = {79},
year = {1991},
}
TY - JOUR
AU - Némethi, András
TI - The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 1
SP - 63
EP - 97
LA - eng
KW - complete intersection; homotopy type
UR - http://eudml.org/doc/90099
ER -
References
top- [1] A'Campo, N., Le groupe de monodromie du deploiement des singularités isolées de courbes planes I, Math. Ann.(1975) 213, 1-32. Zbl0316.14011MR377108
- [2] A'Campo, N., La fonction zeta d'une monodromie. Commentarii Mathematici Helvetici (1975) 50, 233-248. Zbl0333.14008MR371889
- [3] Arnold, V.I., Gausein-Zade, S.M. and Varchenko, A.N., Singularities of differentiable maps, Vols I and II, Birkhäuser, 1988. Zbl0554.58001
- [4] Bourbaki, N., Éléments de mathematiques, Livre II, Algèbre, Chap. 8. Zbl0455.18010
- [5] Bruce, J.W. and Roberts, R.M., Critical points of functions on analytic varieties, Topology Vol.27 No. 1, 57-90 (1988). Zbl0639.32008MR935528
- [6] Deligne, P., Le formalisme des cycles évanescents, SGA VII2, Exp. XIII, Lecture Notes in Math. 340, 82-115 (1973). Zbl0266.14008
- [7] Dimca, A., Function gems defined on isolated hypersurface singularities, Compositio Math.53 (1984), 245-258. Zbl0548.32005MR766299
- [8] Dold, A. and Thom, R., Quasifaserungen und unendliche symmetrische producte, Ann. Math.67 (1958). Zbl0091.37102MR97062
- [9] Eisenbud, D. and Neumann, W., Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Studies, Princeton Univ. Press, 110 (1985). Zbl0628.57002MR817982
- [10] Fox, R., Free differential calculus II, Math. Ann.59(2), March (1954). Zbl0055.01704MR62125
- [11] Gusein-Zade, S.M., Intersection matrices for certain singularities of functions of two variables, Funk. Anal. Pril.8(1) (1974) 11-15. Zbl0304.14009MR338437
- [12] Gusein-Zade, S.M., Dynkin diagrams of singularities of functions of two variables. Funk. Anal. Pril.8(4) (1974) 23-30. Zbl0309.14006MR430302
- [13] Iomdin, I.N., Local topological properties of complex algebraic sets, Sibirsk. Mat. Z.15(4) (1974), 784-805. Zbl0305.14001MR447620
- [14] Iomdin, I.N., Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Z, 15(5) (1974), 1061-1082. Zbl0325.32003MR447621
- [15] Kato, M. and Matsumoto, Y., On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifold Confer., 131-136. Zbl0309.32008MR372880
- [16] Lê Dung Tráng, Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973) 261-270. Zbl0293.32013MR330501
- [17] Lê Dung Tráng, Le monodromie n'a pas de points fixes, J. Fac. Sci. Univ. Tokyo Sec. IA. Math, 22 (1975), 409-427. Zbl0355.32012MR401756
- [18] Lê Dung Tráng, Ensembles analytiques complexes avec lieu singulier de dimension un (d'apres I.N. Iomdin). Séminaire sur les singularités, Publ. Math. Univ. ParisVII, p. 87-95 (1980).
- [19] Lê Dung Tráng and Saito, K., The local π1 of the complement of a hypersurface with normal crossings in codimension 1 is abelian. Arkiv for Mathematik22(1) (1984) 1-24. Zbl0553.14006
- [20] Looijenga, E.J.N., Isolated singular points on complete intersections, London Math. Soc. Lect. Note Series 77, Cambridge University Press, 1984. Zbl0552.14002MR747303
- [21] Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies of Math. Studies, 61, Princeton Univ. Press, 1968. Zbl0184.48405MR239612
- [22] Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology, Vol. 9. pp. 385-393. Zbl0204.56503MR293680
- [23] Pellikaan, R., Hypersurface singularities and resolutions of Jacobi modules. Thesis Rijksuniversiteit Utrecht, 1985. Zbl0589.32017
- [24] Pellikaan, R., Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. (3), 57 (1988), 357-382. Zbl0621.32019MR950595
- [25] Sakamoto, K., Milnor fiberings and their characteristic maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, 145-150. Zbl0321.32010MR372244
- [26] Schrauwen, R.: Topological series of isolated plane curve singularities, Preprint RijksuniversiteitUtrecht, 1988. Zbl0708.57011MR1071417
- [27] Serre, Jean Pierre, Local fields, Graduate texts in math. 67 (1979). Zbl0423.12016MR554237
- [28] Siersma, D., Classification and deformation of singularities, Acad. Service, Vinkeveen, 1974. Zbl0283.57012MR350775
- [29] Siersma, D., Isolated line singularities, Proc. of Symp. in Pure Math., Vol. 40 (1983), Part 2, 485-496. Zbl0514.32007MR713274
- [30] Siersma, D., Hypersurface with singular locus a plane curve and transversal type A 1. Preprint 406, RijksuniversiteitUtrecht (1986). MR1101856
- [31] Siersma, D., Singularities with critical locus a 1-dimensional complete intersection and transversal type A1, Topology and its applications27 (1987), 51-73. Zbl0635.32006MR910494
- [32] Siersma, D., Quasihomogeneous singularities with transversal type A1, Preprint 452, RijksunversiteitUtrecht (1987). MR1000607
- [33] Siersma, D., The monodromy of a series of hypersurface singularities, Preprint University Utrecht (1988). Zbl0723.32015MR1057239
- [34] Spanier, E.H., Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
- [35] Suzuki, M., Group theory I, Grundlehren der mathematischen Wissenschaften247. Zbl0586.20001
- [36] Teissier, B., Cycles evanescents, sections planes et conditions de Whitney, Astérisque7 et8, 1973, 285-362. Zbl0295.14003MR374482
- [37] de Jong, T., Non-isolated hypersurface singularities, Thesis, Nijmegen, 1988.
- [38] Varchenko, A.N., Zeta function of monodromy and Newton's diagram. Invent. Math.(1976), 37, 253-262. Zbl0333.14007MR424806
- [39] Zaharia, A., Sur une classe de singularités non-isolées. To appear in Rev. Roum. Math. Pure Appl. Zbl0719.32017MR1082519
- [40] Zariski, O., On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math.51 (1929). Zbl55.0806.01MR1506719JFM55.0806.01
- [41] Yung-Chen Lu, Singularity theory and an introduction to catastrophe theory, Universitext, Springer Verlag (1976). Zbl0354.58008MR461562
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.