The Milnor fiber and the zeta function of the singularities of type f = P ( h , g )

András Némethi

Compositio Mathematica (1991)

  • Volume: 79, Issue: 1, page 63-97
  • ISSN: 0010-437X

How to cite

top

Némethi, András. "The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$." Compositio Mathematica 79.1 (1991): 63-97. <http://eudml.org/doc/90099>.

@article{Némethi1991,
author = {Némethi, András},
journal = {Compositio Mathematica},
keywords = {complete intersection; homotopy type},
language = {eng},
number = {1},
pages = {63-97},
publisher = {Kluwer Academic Publishers},
title = {The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$},
url = {http://eudml.org/doc/90099},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Némethi, András
TI - The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 1
SP - 63
EP - 97
LA - eng
KW - complete intersection; homotopy type
UR - http://eudml.org/doc/90099
ER -

References

top
  1. [1] A'Campo, N., Le groupe de monodromie du deploiement des singularités isolées de courbes planes I, Math. Ann.(1975) 213, 1-32. Zbl0316.14011MR377108
  2. [2] A'Campo, N., La fonction zeta d'une monodromie. Commentarii Mathematici Helvetici (1975) 50, 233-248. Zbl0333.14008MR371889
  3. [3] Arnold, V.I., Gausein-Zade, S.M. and Varchenko, A.N., Singularities of differentiable maps, Vols I and II, Birkhäuser, 1988. Zbl0554.58001
  4. [4] Bourbaki, N., Éléments de mathematiques, Livre II, Algèbre, Chap. 8. Zbl0455.18010
  5. [5] Bruce, J.W. and Roberts, R.M., Critical points of functions on analytic varieties, Topology Vol.27 No. 1, 57-90 (1988). Zbl0639.32008MR935528
  6. [6] Deligne, P., Le formalisme des cycles évanescents, SGA VII2, Exp. XIII, Lecture Notes in Math. 340, 82-115 (1973). Zbl0266.14008
  7. [7] Dimca, A., Function gems defined on isolated hypersurface singularities, Compositio Math.53 (1984), 245-258. Zbl0548.32005MR766299
  8. [8] Dold, A. and Thom, R., Quasifaserungen und unendliche symmetrische producte, Ann. Math.67 (1958). Zbl0091.37102MR97062
  9. [9] Eisenbud, D. and Neumann, W., Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Studies, Princeton Univ. Press, 110 (1985). Zbl0628.57002MR817982
  10. [10] Fox, R., Free differential calculus II, Math. Ann.59(2), March (1954). Zbl0055.01704MR62125
  11. [11] Gusein-Zade, S.M., Intersection matrices for certain singularities of functions of two variables, Funk. Anal. Pril.8(1) (1974) 11-15. Zbl0304.14009MR338437
  12. [12] Gusein-Zade, S.M., Dynkin diagrams of singularities of functions of two variables. Funk. Anal. Pril.8(4) (1974) 23-30. Zbl0309.14006MR430302
  13. [13] Iomdin, I.N., Local topological properties of complex algebraic sets, Sibirsk. Mat. Z.15(4) (1974), 784-805. Zbl0305.14001MR447620
  14. [14] Iomdin, I.N., Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Z, 15(5) (1974), 1061-1082. Zbl0325.32003MR447621
  15. [15] Kato, M. and Matsumoto, Y., On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifold Confer., 131-136. Zbl0309.32008MR372880
  16. [16] Lê Dung Tráng, Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973) 261-270. Zbl0293.32013MR330501
  17. [17] Lê Dung Tráng, Le monodromie n'a pas de points fixes, J. Fac. Sci. Univ. Tokyo Sec. IA. Math, 22 (1975), 409-427. Zbl0355.32012MR401756
  18. [18] Lê Dung Tráng, Ensembles analytiques complexes avec lieu singulier de dimension un (d'apres I.N. Iomdin). Séminaire sur les singularités, Publ. Math. Univ. ParisVII, p. 87-95 (1980). 
  19. [19] Lê Dung Tráng and Saito, K., The local π1 of the complement of a hypersurface with normal crossings in codimension 1 is abelian. Arkiv for Mathematik22(1) (1984) 1-24. Zbl0553.14006
  20. [20] Looijenga, E.J.N., Isolated singular points on complete intersections, London Math. Soc. Lect. Note Series 77, Cambridge University Press, 1984. Zbl0552.14002MR747303
  21. [21] Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies of Math. Studies, 61, Princeton Univ. Press, 1968. Zbl0184.48405MR239612
  22. [22] Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology, Vol. 9. pp. 385-393. Zbl0204.56503MR293680
  23. [23] Pellikaan, R., Hypersurface singularities and resolutions of Jacobi modules. Thesis Rijksuniversiteit Utrecht, 1985. Zbl0589.32017
  24. [24] Pellikaan, R., Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. (3), 57 (1988), 357-382. Zbl0621.32019MR950595
  25. [25] Sakamoto, K., Milnor fiberings and their characteristic maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, 145-150. Zbl0321.32010MR372244
  26. [26] Schrauwen, R.: Topological series of isolated plane curve singularities, Preprint RijksuniversiteitUtrecht, 1988. Zbl0708.57011MR1071417
  27. [27] Serre, Jean Pierre, Local fields, Graduate texts in math. 67 (1979). Zbl0423.12016MR554237
  28. [28] Siersma, D., Classification and deformation of singularities, Acad. Service, Vinkeveen, 1974. Zbl0283.57012MR350775
  29. [29] Siersma, D., Isolated line singularities, Proc. of Symp. in Pure Math., Vol. 40 (1983), Part 2, 485-496. Zbl0514.32007MR713274
  30. [30] Siersma, D., Hypersurface with singular locus a plane curve and transversal type A 1. Preprint 406, RijksuniversiteitUtrecht (1986). MR1101856
  31. [31] Siersma, D., Singularities with critical locus a 1-dimensional complete intersection and transversal type A1, Topology and its applications27 (1987), 51-73. Zbl0635.32006MR910494
  32. [32] Siersma, D., Quasihomogeneous singularities with transversal type A1, Preprint 452, RijksunversiteitUtrecht (1987). MR1000607
  33. [33] Siersma, D., The monodromy of a series of hypersurface singularities, Preprint University Utrecht (1988). Zbl0723.32015MR1057239
  34. [34] Spanier, E.H., Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
  35. [35] Suzuki, M., Group theory I, Grundlehren der mathematischen Wissenschaften247. Zbl0586.20001
  36. [36] Teissier, B., Cycles evanescents, sections planes et conditions de Whitney, Astérisque7 et8, 1973, 285-362. Zbl0295.14003MR374482
  37. [37] de Jong, T., Non-isolated hypersurface singularities, Thesis, Nijmegen, 1988. 
  38. [38] Varchenko, A.N., Zeta function of monodromy and Newton's diagram. Invent. Math.(1976), 37, 253-262. Zbl0333.14007MR424806
  39. [39] Zaharia, A., Sur une classe de singularités non-isolées. To appear in Rev. Roum. Math. Pure Appl. Zbl0719.32017MR1082519
  40. [40] Zariski, O., On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math.51 (1929). Zbl55.0806.01MR1506719JFM55.0806.01
  41. [41] Yung-Chen Lu, Singularity theory and an introduction to catastrophe theory, Universitext, Springer Verlag (1976). Zbl0354.58008MR461562

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.