On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions
ESAIM: Control, Optimisation and Calculus of Variations (1996)
- Volume: 1, page 35-75
- ISSN: 1292-8119
Access Full Article
topHow to cite
topCoron, Jean-Michel. "On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 35-75. <http://eudml.org/doc/90500>.
@article{Coron1996,
author = {Coron, Jean-Michel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Navier-Stokes equations; controllability; Navier slip boundary conditions; slip boundary conditions; approximate controllability},
language = {eng},
pages = {35-75},
publisher = {EDP Sciences},
title = {On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions},
url = {http://eudml.org/doc/90500},
volume = {1},
year = {1996},
}
TY - JOUR
AU - Coron, Jean-Michel
TI - On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 35
EP - 75
LA - eng
KW - Navier-Stokes equations; controllability; Navier slip boundary conditions; slip boundary conditions; approximate controllability
UR - http://eudml.org/doc/90500
ER -
References
top- [1] R.A. Adams: Sobolev spaces, Academic Press, San Diego, London, 1978. Zbl0314.46030MR450957
- [2] C. Bardos, F. Golse, and D. Levermore: Fluid dynamic limits of kinetic equations I: formal derivations, J. Statistical Physics, 63, 1991, 323-344. MR1115587
- [3] F. Coron: Derivation of slip boundary conditions for the Navier-Stokes System from the Boltzmann equation, J. Statistical Physics, 54, 1989, 829-857. Zbl0666.76103MR988561
- [4] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, 5, 1992, 295-312. Zbl0760.93067MR1164379
- [5] J.-M. Coron: Stabilization of controllable systems, preprint, 1993, to appear in Nonholonomic geometry, A. Bellaïche and J.-J. Risler ed., Progress in Math., Birkhäuser. Zbl0858.93059MR1421826
- [6] J.-M. Coron: Relations entre commandabilité et stabilisations non linéaires, in Nonlinear partial differential equations and their applications, Collège de France seminars, Paris 1989-1991, Vol.11, H. Brezis and J.-L. Lions eds., Pitman Res. Notes Math. Ser., London, 299, 1994, 68-86. Zbl0813.93014MR1268900
- [7] J.-M. Coron: Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris, 317, 1993, 271-276. Zbl0781.76013MR1233425
- [8] J.-M. Coron: On the controllability of 2-D incompressible perfect fluids, J. Math. Pures et Appliquées, 75, 1996, 155-188. Zbl0848.76013MR1380673
- [9] C. Fabre: Uniqueness result for Stokes equations and their consequences in linear and nonlinear control problems, in Contrôlabilité approchée des solutions de quelques équations d'évolution, Habilitation à diriger des recherches, Université Pierre et Marie Curie, January 1996. MR1396664
- [10] E. Fernández-Cara and M. González-Burgos: A result concerning approximate controllability for the Navier-Stokes Equations, SIAM J. Control, to appear. Zbl0833.93009
- [11] E. Fernández-Cara and J. Real: On a conjecture due to J.-L. Lions, Nonlinear Analysis, Theory, Methods et Appl., 21, 1993, 835-847. Zbl0844.35082MR1249663
- [12] A.V. Fursikov: Exact boundary zero controllability of three-dimensional Navier-Stokes equations, J. Dynamical Control et Systems, 1, 1995, 325-350. Zbl0951.93005MR1354539
- [13] A.V. Fursikov and O. Yu. Imanuvilov: On controllability of certain Systems simulating a fluid flow, in Flow Control, IMA vol. in Math. and its Appl. , M.D. Gunzburger ed., Springer Verlag, New York, 68, 1995, 149-184. Zbl0922.93006MR1348646
- [14] A.V. Fursikov and O.Yu. Imanuvilov: On exact boundary zero controllability of the two-dimensional Navier-Stokes equation, Acta Appl. Math., 36, 1994, 1-10. Zbl0809.93006MR1308746
- [15] A.V. Fursikov and O.Yu. Imanuvilov: Local exact controllability of the Navier-Stokes equations, RIM-GARC preprint series 95-92, Seoul National University, February 1996. MR1404773
- [16] G. Geymonat and E. Sanchez-Palencia: On the vanishing viscosity limit for acoustic phenomena in a bounded region, Arch. Rat. Mechanics and Analysis, 75, 1981, 257-268. Zbl0475.76079MR605891
- [17] B.E. Launder and D.B. Spalding: Mathematical models of turbulence, Academic Press, 1972. Zbl0288.76027
- [18] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [19] J.-L. Lions: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Gauthier-Villars, Paris, 1968. Zbl0179.41801MR244606
- [20] J.-L. Lions: Are there connections between turbulence and controllability?, 9th IN-RIA International Conference, Antibes, June 12-25, 1990.
- [21] J.-L. Lions: Exact controllability for distributed Systems. Some trends and some problems, in: Applied and Industrial Mathematics, R. Spigler ed., Kluwer Academic Publishers, Dordrecht, Boston, London, 1991, 59-84. Zbl0735.93006MR1147191
- [22] J.-L. Lions and E. Magenes: Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
- [23] P. Maremonti: Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary condition in half-space, Ricerche di Matematica, 40, 1991, 81-135. Zbl0754.35110MR1191888
- [24] C. L. M. H. Navier: Sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France, 6, 1823, 389-440.
- [25] G.G. Stokes: On the effect of internal friction of fluids on the motion of pendulums, Trans. Cambridge Philos. Soc., 9, 1851, 8-106.
Citations in EuDML Documents
top- Jacques-Louis Lions, Enrique Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations
- Caroline Fabre, Uniqueness results for stokes equations and their consequences in linear and nonlinear control problems
- O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations
- T. Horsin, On the controllability of the burger equation
- Olivier Glass, Exact boundary controllability of 3-D Euler equation
- Viorel Barbu, Feedback stabilization of Navier–Stokes equations
- Olivier Glass, Contrôlabilité de l’équation d’Euler tridimensionnelle pour les fluides parfaits incompressibles
- Viorel Barbu, Feedback stabilization of Navier–Stokes equations
- Olivier Glass, Exact boundary controllability of 3-D Euler equation
- S. Guerrero, O. Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.