Fibrations in bicategories

Ross Street

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1980)

  • Volume: 21, Issue: 2, page 111-160
  • ISSN: 1245-530X

How to cite

top

Street, Ross. "Fibrations in bicategories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 21.2 (1980): 111-160. <http://eudml.org/doc/91227>.

@article{Street1980,
author = {Street, Ross},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {bilimits; doctrines; fibrations; enriched categories; 2-categories; monads; triples; finite ordinals; adjunction; monoid-structure-preserving homomorphism in bicategories; groupoidal and posetal objects; bidiscrete; ny-gamuts},
language = {eng},
number = {2},
pages = {111-160},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Fibrations in bicategories},
url = {http://eudml.org/doc/91227},
volume = {21},
year = {1980},
}

TY - JOUR
AU - Street, Ross
TI - Fibrations in bicategories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1980
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 21
IS - 2
SP - 111
EP - 160
LA - eng
KW - bilimits; doctrines; fibrations; enriched categories; 2-categories; monads; triples; finite ordinals; adjunction; monoid-structure-preserving homomorphism in bicategories; groupoidal and posetal objects; bidiscrete; ny-gamuts
UR - http://eudml.org/doc/91227
ER -

References

top
  1. 1 J. Benabou, Introduction to bicategories, Lecture Notes in Math.47, Springer (1967), 1-77. MR220789
  2. 2 J. Cole, The bicategory of topoi, and spectra, J. Pure Appl. Algebra ( to appear). 
  3. 3 R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1957. Zbl0080.16201MR345092
  4. 4 J.W. Gray, Fibred and cofibred categories, Proc. Conference on categ. Algebra at La Jolla, Springer (1966), 21-83. Zbl0192.10701MR213413
  5. 5 J.W. Gray, Formal category theory: Adjointness for 2-categories, Lecture Notes in Math.391, Springer (1974). Zbl0285.18006MR371990
  6. 6 G.M. Kelly & R.H. Street, Review of the elements of 2-categories, Lecture Notes in Math.420, Springer (1974), 75-103. Zbl0334.18016MR357542
  7. 7 A. Kock, Monads for which structures are adjoint to units, Aarhus Univ. Preprint Series 35 (1972 - 73), 1-15. MR1359690
  8. 8 F.W. Lawvere, Ordinal sums and equational doctrines, Lecture Notes in Math.80, Springer (1969), 141-155. Zbl0165.03204MR240158
  9. 9 F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mate. e Fisico Milano 43 (1974), 135-166. Zbl0335.18006MR352214
  10. 10 S. Mac Lane, Categories for the working mathematician, Springer, 1971. Zbl0906.18001MR1712872
  11. 11 H. Schubert, Categories, Springer, 1972. Zbl0253.18002MR349793
  12. 12 R.H. Street, Fibrations and Yoneda's Lemma in a 2-category, Lecture Notes in Math.420, Springer (1974), 104-133. Zbl0327.18006MR396723
  13. 13 R.H. Street, Elementary cosmoi I, Lecture Notes in Math.420, Springer (1974), 134-180. Zbl0325.18005MR354813
  14. 14 R.H. Street, Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra8 (1976), 149 - 181. Zbl0335.18005MR401868
  15. 15 V. Zoberlein, Doktrinen auf 2-Kategorien, Manuscript, Math. Inst. Univ.Zürich, 1973. 
  16. 16 R.H. Street, Cosmoi of internal categories, Trans. A.M.S. ( to appear). Zbl0393.18009

Citations in EuDML Documents

top
  1. Andrews Pitts, On product and change of base for toposes
  2. André Joyal, Ross Street, Pullbacks equivalent to pseudopullbacks
  3. Jiří Adámek, Václav Koubek, Jiří Velebil, A duality between infinitary varieties and algebraic theories
  4. S. Kasangian, G. M. Kelly, F. Rossi, Cofibrations and the realization of non-deterministic automata
  5. R. Rosebrugh, R. J. Wood, Gamuts and cofibrations
  6. Stephen Schanuel, Ross Street, The free adjunction
  7. S. Kasangian, B -catégories and gamuts
  8. Marco Grandis, On distributive homological algebra, I. RE-categories
  9. S. Kasangian, R. Rosebrugh, Glueing enriched modules and composition of automata
  10. Renato Betti, Marco Grandis, Complete theories in 2 -categories

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.